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ABSTRACT

In this paper, a contention resolution algorithm (CRA) is

proposed for the common subexpression elimination of the 

multiplier block of digital filter structure. CRA synthesizes

common subexpressions of any hamming weight to achieve an 

overall minimization with the emphasis that every logic depth 

increment must be accompanied by a reduction in logic 

complexity. A new data structure, called the admissibility graph

is introduced to succinctly represent a set of coefficients and the 

admissible subexpressions are progressively labeled on the graph

as either precedence or contention edges (or paths). The

performance of CRA is evaluated based on benchmarked circuits 

and randomly generated coefficients. It is demonstrated that our

algorithm outperforms several distinguished algorithms in both 

the logic depth and logic complexity.

1. INTRODUCTION 

The decomposition of the multiplication of a variable by a set of

constants into a multiplierless shift-and-add block has been a

core operation and often performance bottleneck in many digital

signal processing applications including FIR filters, IIR filters,

Farrow structure interpolators and filter banks [3]. High

throughput rate, low power dissipation and increased

programmability are among the benchmark performance criteria. 

Dedicated hardware optimized for a fixed coefficient set meets

the stringent goals of sampling rate and power budget at reduced 

flexibility and scalability. For applications that demand

expandable, single-platform, multiservices flexibility, the 

emergence of fast reconfigurable Field Programmable Gate 

Arrays (FPGAs) has made the run time reconfigurable 

Application Specific Integrated Circuit (ASIC) a reality and

choice technology for high-speed digital filters. Both design 

approaches require the automation techniques to perform

combinatorial optimization of formidable complexity with

drastically different emphasis than software compilers for the 

general purpose DSPs. It is therefore imperative to derive 

optimization methods that facilitate efficient automation in the 

compilation of silicon solutions and form the basis for high-level 

synthesis tools targeted at the next-generation ASICs.

By replacing individual coefficient multipliers by a single 

multiplier block, the core operation of the transpose direct form

FIR filter can be modeled as a general Multiple Constant

Multiplications (MCM) problem [6, 8]. The efficiency in 

reducing the cost metric (power, hardware, and logic depth) of 

the MCM operation directly influences the performance of the

ASIC implementation of FIR filters. Due to the complexity of 

the MCM problem defined in [8], there is no exact algorithm 

that guarantees optimality of the solutions for all kinds of

coefficients. Existing common subexpression elimination (CSE) 

algorithms are based on heuristic search techniques or combined 

exhaustive search with steepest descent approach [1, 2, 6-8] to 

select the common subexpressions for elimination. These

algorithms suffer from a common problem that once a

subexpression is identified as the most profitable common 

subexpression, the decision cannot be reverted. Each candidate 

subexpression is independently selected based on some cost

function to form the final solution progressively. The gross

effect of interdependency of coefficients to the cost of

implementation is not considered.

In this paper, we proposed a drastically different graph based 

technique to the formulation of CSE algorithms for the MCM 

problems. A generalized contention resolution algorithm 

featuring the ability to change the precedence of subexpressions

to resolve the local minima problem is proposed. It extends the 

basic CRA of [9] which eliminates only weight two common 

subexpressions. The generalized CRA not only reduces the logic 

complexity but also maximizes the performance by reducing the

logic depth. Reducing the logic depth has the added advantage 

that shallow taps shorten the propagation paths of spurious

switching activities through long chain of adders, thus lowering 

the power dissipation.

2. ADMISSIBILITY GRAPH

A simple admissibility graph, G(V, E) is proposed to describe a

filter coefficient where the vertex set V is formed by the nonzero 

digits of the coefficient and the edge set E is a collection of all 

subexpressions of weight two generated from the coefficient. An 

edge e = (u, v) is a connection of two vertices u and v. A pair of 

edges incident with a common vertex are said to be adjacent. A

FIR filter can be modeled as a union of admissibility graphs, i.e.,

where N is the total number of coefficients,

and G

N

i
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i(Vi, Ei) is an admissibility graph for the i-th coefficient. 

Canonical Signed Digit (CSD) form is used to represent the filter 

coefficients. Each vertex, v is associated with a unique positional 

index, index(v), determined by its position in the CSD form.

Two types of vertices are defined, the signed and unsigned

vertices correspond to the digits  ( 1) and 1, respectively. All 

vertices in the admissibility graph are set free initially. A 

precedence edge, ep is used to link two free vertices. Once a 

vertex is connected by a precedent edge, it becomes fixed. Two 

vertices are linked via a contention edge ec if at least one vertex 

is fixed. A precedence edge is used to commit a subexpression

into the optimal common subexpression list and a contention 

edge is used to indicate subexpression that is denied admission 

as an optimal common subexpression by another subexpression 

that has already been committed.  In other words, each 

contention edge implies a conflict (contention) between two 
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common subexpressions, as there exist adjacent edges of

different precedences. Selection of one of which into the final 

common subexpression list will automatically nullify the

admissibility of the other. Each edge, e is given an order of 

precedence, order(e) according to the number of occurrences

(henceforth refer to as the frequency) of its subexpression, with

the lowest value of order(e) signifying the highest frequency.

Two edges are said to be equivalent if they have the same order. 

Equivalent edges are common subexpressions. Two 

subexpressions are common if one can be obtained from another 

without incurring adder costs. A path is a series of connected 

edges. Two paths 1 = e1, e2 … ew  and 2 = e1’, e2’, … ew ’

are said to be equivalent, if they have the same weight and all 

their corresponding edges are equivalent, i.e., order(ei) =

order(ei’) i = 1, 2, .., w 1.

Fig. 1 shows a 5-vertex admissibility graph for the

coefficient C1 = 00 010 001. The unsigned and signed vertices 

are drawn as solid and hollow circles, respectively. The 

precedence and contention edges are drawn with solid and dash

lines, respectively. Each vertex is annotated with its positions, 

and each edge is annotated with its order of precedence. This

admissibility graph features one precedence edge, cd of order 1 

and three contention edges, bc, ce and de of order 1, 2 and 4 

respectively. Vertices a, b and e are free vertices.

a
Figure 1. A 5-vertex admissibility graph. 

3. CONTENTION RESOLUTION ALGORITHM (CRA)

The proposed CRA has the ability to rectify poor decisions made

in earlier iterations or postpone ambiguous decisions to later 

stages. The rigidity of the search for common subexpressions 

has been relaxed by allowing the earlier chosen candidate 

subexpressions marked by the precedence paths to be substituted 

by the adjacent contention paths determined by a specific cost

metric. The final solution is generated at the last stage when all 

the major contentions have been resolved. The algorithm

considers subexpressions of different weights.  Unlike other 

existing algorithms, CRA increases the logic depth only when it 

leads to a saving in the adder cost.

Let L be the set of unique CSD coefficients that have more

than one nonzero digits. The essential steps involved in the CRA

are given as follows: 

(1) The coefficients in L are decomposed into subexpressions of

hamming weight two. These subexpressions are sorted in 

descending order of frequency to form an order list S. An order 

number is assigned to each subexpression in S such that the 

subexpression with higher frequency has lower order number

and common subexpressions have the same order. Set j = 1 and 

generate the free vertices of the primitive admissibility graphs, 

Gi from the nonzero digits of the coefficients Ci of L.

(2) Label the subexpressions with order = j on G with 

precedence or contention edges accordingly. Update the list of

precedence and contention edges, EP and EC.

(3) Generate precedence paths (weight > 2) by expanding 

existing edges or paths.  Two types of simple candidate path are

considered, one is the hybrid path comprising a precedence edge 

or path adjacent to a contention edge, and the other is the 

contention path comprising two adjacent contention edges. The 

pattern graph being considered consists of the candidate path

and its adjacent edges. Calculate the difference in adder costs, R

in changing the candidate paths, c to precedence paths and the 

status of their affected adjacent edges. If R > 0, c will be 

promoted to precedence paths, with the status of their affected 

adjacent edges in the pattern graph changed to resolve any

conflict. Insert the resulting precedence paths  in PP and update

EP and EC. Sort the list PP by the path weights and frequencies, 

assigned order numbers as for S but with the order numbers 

lower than the smallest order number of S.

(4) Search for precedence edges which are adjacent to 

contention edge(s) that have a free endpoint. Calculate the cost 

difference, R of swapping the status of the precedence edge with 

the contention edge(s) based on a simple pattern graph

comprising a precedence edge and at most two adjacent

contention edges (one from each endpoint) and their equivalent 

edges in EP. If R > 0, transfer the precedence edge, ep from EP to 

EC and the contention edge(s), ec from EC to EP.

(5) Increment j and repeat Step 2 to 4 until the expressions in S

are exhausted. 

(6) Empty EC. Traverse all precedence edges and paths

(represent partial sums) in EP and PP by a Hamiltonian path. The 

inserted links (represent adders to sum the partial sums) are 

stored in EC.

(0)
C1

1

4 2

1

e(10)
b(3)

 d(7)
c(5)

In Steps 3 and 4, R is equal to the difference in the adder 

costs between G1 and G2, where G1 and G2 are the subgraphs 

comprising the candidate path (for Step 3) or precedence edge

(for Step 4) and its emanating edges before and after the

conversion, respectively. In evaluating R, each additional 

contention edge generated by the conversion induces an adder. It 

should be noted that we will not break an already formed

precedence path,  to create a hybrid path for further

optimization in future iterations as this will introduce an adder if 

its frequency, f( ) > 2. Also, if f( ) = 2, changing it to a hybrid

path will cause the remaining equivalent path to become hybrid

as well, which incurs one more adder. From rigorous 

experimental simulation, it has been found that the probability of 

such decomposition of precedence paths that leads to further cost

savings is low and often the savings, if any, are insignificant.

Therefore, we consider only those edges emanating from the 

precedence edge or candidate path that have their attributes

changed after the conversion. Let ep be the number of 

precedence edges in G1 that have been changed to contention

edges in G2. If n(ec) is the number of contention edges of the

candidate path c, then the differential adder cost is 

R( c) = n(ec) ep    (1) 

Equivalent candidate paths with positive R will be converted 

to precedence paths by promoting their contention edges to 

precedence edges if the aggregate saving is positive, i.e.,
c

i iiR
1

0          (2) 

where c is the set of equivalent candidate paths that have 

positive R.

The total number of adders required can be estimated from

the final Hamiltonian path. Let Pw be the set of distinct order 

precedence paths of weight w. Further, let C( w) denote the 

number of adders required to construct the precedence path, w

Pw. A partial sum represented by a weight w path,  may

require from zero to w–1 adders to construct depending on (i) 
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whether there exists an equivalent path of weight w or (ii) 

whether there exist other lower weight paths equivalent to some 

segments of . Using the above notations, the formula for 

estimating the adder cost can be expressed as:

C

w

w

w ECA
max

2

(3)

Due to the hidden vertex problem caused by the order of 

summing the vertices of a precedence path, the first term in (3)

is implementation dependent. Since it is not likely to provide a 

closed form estimation of the exact minimal logic depth until the 

implementation of the precedence paths is fixed, the upper 

bound of the logic depth, D is given by.

1max1log

1max,max

2

01

wVD

DD

freei

i

L

iD                                     (4) 

where |Vfree| is the number of free vertices and w( ) is the weight 

of path in the solution graph. 

Example: Consider the filter F1 of L = {C1, C2, C3} = 

{ 00 010 001, 10 00100 0 , 1010 00 000}. The traces of the 

execution of CRA algorithm are shown in Fig. 2-4. There is no

contention resolution required until the fifth iteration, j = 5. The 

equivalent candidate paths, abc hij in Step 3 of the algorithm 

are marked with dotted boxes in Fig. 2. If both candidate paths 

are converted to precedence paths, only 10 adders are required to

generate and sum all partial products of Fig. 2. Otherwise, 11 

adders are required if they remain unchanged. 

Figure 2. Step 3 in Iteration 5. 

Figure 3. Step 4 in Iteration 5. 

Figure 4. Final admissibility graph. 

 Delay  Logic operator    << n  left shift by n bits 

Figure 5. Circuit implementation. 

After promoting abc and hij to PP, the graph of Fig. 3 is

obtained. Step 4 of the algorithm is evoked to change the 

precedence edge ml to contention edge and the contention edges

mn and kl to precedence edges. This contention resolution results

in another saving of an adder.

The final solution graph is shown in Fig. 4.The total number 

of adders used can be calculated from (3). Since C( 2) + C( 3) = 

4 and |EC| = 5, A = 9 adders are required to implement F1. The 

circuit is shown in Fig. 5. It is noticed that Tap 2 is the critical 

path and the logic depth is 3. 

4. EXPERIMENTAL RESULTS

The simulation results of the benchmark filters for the

comparison of various algorithms are shown in Table 1.  LO and 

LD are the acronyms of the number of logic operators and the

logic depth, respectively. The benchmark filters and the

algorithms being compared are annotated with the referenced 

sources. For those algorithms that are not implemented, their 

results are taken from [7] directly or filled with single dash lines

if they are not available. For consistency, LO includes the 

accumulator associated with each filter tap. This accounts for the

slight deviation in some of the values reported in the literature.

Table 1. Simulation results on FIR filters.
CSD BHM[3] Hartley[2] ITM**[8] Pasko[6] NRSCSE[7] CRA

Filter N l
LO LD LO LD LO LD LO LD LO LD LO LD LO L

F1 3 1 13 5 11 6 10 4 12 4 9 4 10 3 9 4

F2[7] 4 8 15 4 9 7 10 3 11 4 10 4 9 3 9 3

F3[8] 4 1 18 4 11 7 13* 4 12 4 11 5 13 4 11 5

F4[6] 25 9 35 3 31 6 33* 3 34 3 30 3 30 3 30 3

F5[6] 59 1 11 3 - - 99 4 - - 90 3 90 3 90 3

F6[4] 12 1 26 4 - - 203 4 - - 178 5 188 4 178 5

l(6)

k(3)

i(8)

5

C2

3

2

5

1
 g(2)

f(0)

h(5)

j(10)C1

1

24

d(7)

e(10)

c(5)

C3 4

1

2

3

m(8)

 b(3)

1

a(0)
5

n(10)

The results show that CRA is capable of generating better

solutions with lower number of logic operators than BHM at

only half the logic depth or shorter. CRA does not guarantee its

solutions to have the lowest logic depth, but in cases where it

yields minimal logic depth solutions, the number of logic 

operators is also the least as observed from Table 1. In short, 

CRA has the best overall performance in view of its achievable

logic depth for solutions generated with commensurate 

optimality of logic complexity.

l(6)

c(5)

e(10)

a(0)

d(7)
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4 1
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3

k(3)

4
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Due to the unique evolution of the algorithm, a constraint on 

the logic depth of the solution can be imposed on CRA to suit 

the application if necessary. CRA(wmax) will generate only

common subexpressions of hamming weight w wmax where 

wmax is a preset maximum weight limit. Unlike the logic depth

constrained CSE algorithm of [5], our logic depth driven

CRA(wmax) incurs no overhead. Thus, it is of interest to 

scrutinize how the adder cost changes as wmax increases. 50 

randomly generated coefficient sets for each combination of the 

number of taps (N) and coefficients’ word lengh (l) are tested.

The number of coefficient sets that have the minimum number 

of logic operators from each wmax is recorded and the percentage 

of the least adder cost solutions obtained from each wmax is listed 

in Table 2 for every combination of N and l.  For example, for N

= 40 and l = 11, only 2% of the coefficient sets have the least 

adder cost when wmax = 2. This means that for this particular

coefficient set, no better result can be achieved by expanding the 

subexpressions. There exist filter sets that exhibit a critical

turning point at some wmax beyond which the average adder cost 

will increase by relaxing the logic depth. This is an interesting 

phenomenon contrary to conventional belief and the

experimental results in [5]. The number of coefficient sets that

display this critical descend phenomenon for each combination
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of N and l are accounted and its percentage is recorded in the last 

row of Table 2 labeled %CDP.

Table 2. Simulation results of CRA3 constraints. 

l 10 20 30

N 20 40 60 80 20 40 60 80 20 40 60 80

wmax = 2 14% 2%

wmax = 3 64% 58% 42% 36% 28% 18% 10% 24% 28% 14% 6% 18%

wmax = 4 22% 40% 58% 64% 70% 58% 56% 46% 52% 56% 40% 38%

wmax = 5 2% 24% 32% 30% 16% 30% 52% 44%

wmax = 6 2%

wmax = 7 4%

%CDP 4% 4% 2% 2% 6% 18% 18% 14% 10% 10% 24%

From Table 2, everything being equal, the larger the 

coefficient set, the higher the weight limit to obtain the least

adder cost solution and the longer the word length, the higher the

weight limit is needed to achieve the best cost solution. The 

%CDP also increases as l and N increases. Like CRA, 

CRA(wmax) generates higher hamming weight subexpressions 

only when they lead to reduction in adder cost. From the %CDP

of Table 2, we conjecture that longer (higher weight)

subexpressions may not always foster adder cost reduction, as

one would expect. The problem may occur when the elimination

of longer common subexpressions prevent the more beneficial 

elimination of some shorter common subexpressions whose 

number of occurrences may be outweighing. Although the ways

to obtain longer subexpressions differ from algorithm to 

algorithm, this local minimum exists, especially for CSE

algorithms that start the search from the longest subexpressions. 

One possible suggestion to mitigate this critical descend problem

is to apply edge resolutions first and then apply path resolutions 

to the resultant solution. We call this revised CRA algorithm as 

progressive CRA (P-CRA). P-CRA performs slightly better than 

CRA with an improved computational efficiency.

The MATLAB programs of CRA, CRA (wmax = 2), P-CRA,

NRSCSE and Pasko’s algorithms are run on a Pentium IV 1.9

GHz personal computer with 256MB of system memory. The 

average adder costs and the average computation time in seconds 

for filters with different number of taps at a fixed word length of

11 are simulated and the results are charted in Fig. 6. It is

obvious that CRA and P-CRA outperform other algorithms 

being compared.

Figure 6. Comparison of average adder cost and computation

time of CSD(0), NRSCSE(1), Pasko(2), CRA(3), 

CRA(wmax=2)(4) and P-CRA(5).

CRA and P-CRA require more computation time than

Pasko’s algorithm on small coefficient sets. This is because for 

smaller coefficient sets, more time is spent on the contention 

path resolution than the search for the most common

subexpressions at each iteration. As the size of the sets increases,

the computation time of Pasko exacerbates while that of other 

algorithms remain relatively constant. For CRA and P-CRA, the 

number of iterations is dependent on the maximum order number 

of the subexpression list, which is limited by the word length.

As the word length is fixed, the iteration times are relatively

stable. Therefore, the computational time increases only

marginally as the coefficient set grows larger. CRAs generate

common subexpression list only once at the very beginning, 

which save a lot of computational effort. P-CRA has effectively

avoided some of the repetitive effort in comparison with CRA.

5. CONCLUSION

In this paper, a new CRA based on graph theoretic approach has 

been proposed to circumvent the local minimum problem 

encountered by the existing CSE algorithms. A novel

admissibility graph is employed as an efficient data structure for

the proposed algorithm, and this synthesis approach is unique in 

its fundamental concept of operations. The benefit of the

algorithm is derived from its ability to appraise and substitute

the chosen subexpressions when better alternatives emerge.

Comparison with related work shows that our logic depth driven 

algorithm produces low cost circuits with shorter critical path 

delay. Moreover, our algorithm is also runtime efficient.
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