
MATRIX FORMULATION: FAST FILTER BANK 

 Lim Yong Ching Lee Jun Wei 

 School of Electrical & Electronic Engineering, Department of Electrical and Computer Engineering, 

 Nanyang Technological University, National University of Singapore, 

 Singapore 639798 Singapore 119260 

ABSTRACT

The Fast Filter Bank (FFB) describes a class of tree-structured 

filter banks that operate on a frequency response masking 

principle. Although the structure is highly regular and 

conveniently implemented in hardware designs, real-time 

software implementations lead to inefficiencies due to its 

branching structure. In this paper, an alternative formulation 

of the FFB is proposed in terms of matrix computations. This 

allows an efficient approach in its implementation, and 

significantly reduces the overall buffer memory size required. 

The matrix operations can be carried out using easily 

available highly-optimized mathematical software packages, 

resulting in improvements in computational speed. Savings of 

up to a factor of 3 in the computer time has been observed 

during tests on a Pentium 4 computational platform 

workstation.

1. INTRODUCTION 

In [1], the Fast Filter Bank (FFB) was introduced. The 

FFB splits an input signal into frequency-selective channels. 

Since its design is based on Frequency Response Masking 

(FRM) techniques [2], the filter bank functions primarily as a 

highly efficient single-rate filter bank. Since the overall 

response of the FFB obtained by summing the outputs of all 

the channels is a unit delay, it does not introduce any 

distortion to the input signal. The FFB is a general form of the 

sliding FFT filter bank [3], and was shown in [4] to have 

better computational efficiency over other single-rate 

implementations such as the polyphase implementation. 

In many filter bank applications, narrow transition widths 

between channels and high stopband attenuation are desirable 

characteristics. Since the design of the FFB is based on the 

FRM principle, it is able to achieve high selectivity while 

keeping the order of the prototype subfilters very low. This 

reduces coefficient sensitivity issues associated with high 

order filters. The FFB is thus highly suitable for 

implementation in hardware, and the coefficients can be 

quantized using integer programming methods [7]-[8]. 

However, implementing the FFB using software 

programming methods poses some difficulties. Due to the 

branching structure of the filter bank, data buffers will have to 

be implemented prior to each subfilter. For a filter bank with 

many channels, the number of data buffers required becomes 

very large. Addressing and manipulating these buffers 

becomes cumbersome. 

In this paper, a matrix formulation is proposed as an 

alternative representation to the filter bank’s operation. The 

proposed representation in this paper is based on a modified 

form of the FFB, the node-modulated FFB (nmFFB) [5]-[6], 

resulting in an efficient and convenient expression. As a 

result, only one data buffer is required per stage of the filter 

bank. The data is organized into two-dimensional blocks and 

are much easier to manipulate.  Unlike other types of filter 

banks, the matrix formulation for the FFB is rather unusual 

because of its structural properties: 1. It consists of a series of 

cascaded interpolated subfilters and 2. It has a branching 

structure.

In modern computers, the limiting factors in processing 

are usually not due to the rate at which arithmetic operations 

are performed, but rather due to the efficiency at which data 

accesses and transfers to and from memory occurs, [9]-[10]. 

This is especially relevant in our filter bank situation in which 

a lot of data is often manipulated. By blocking the data in 

vectors and matrices, data pipelining and efficient memory 

usage is facilitated within the hardware. 

Furthermore, many software mathematical packages are 

easily available for computing matrix operations. These 

mathematical packages are highly-optimized for specific 

processors and make use of the special facilities and 

architectures inherent in the target processors. One such 

popular package is the Basic Linear Algebra Subprograms 

(BLAS), [11]. A further advantage of using standardized 

packages such as BLAS is to promote structured 

programming and program portability. 

2. BACKGROUND: THE FAST FILTER BANK 

The Fast Filter Bank (FFB) was first introduced in [1] as a 

very efficient single-rate filter bank. It is a generalized form 

of the sliding Fast Fourier Transform (FFT). The FFB and the 

FFT is very similar in form and structure when operated as a 

filter bank. However, whereas the sliding FFT is actually a 

cascade of first-order subfilters, the FFB is a generalized form 

consisting of a cascade of higher-order subfilters. As a result, 

the FFB presents a filter bank with better frequency response 

characteristics than the FFT at a slightly higher complexity. 
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Fig. 1    An 8-channel Fast Filter Bank 

Fig. 1 shows a block diagram of an 8 channel FFB. It 

consists of K=3 stages. At each stage k, there are 2
k
 subfilters 

which are denoted by , ( )kL

k iH z , and these subfilters are 

interpolated by a factor of Lk=2
K-k-1

. Hk,i(z) for i>0 are 

complex modulated versions of the real-coefficient prototype 

subfilter Hk(z) = Hk,0(z):

1 / 2

, ( ) ki i

k i N k NH z W H W z  (1) 

where i  is the bit-reversed version of i in K-1 bits, N=2
K

 is 

the number of complex output channels, k  is the length of 

the prototype subfilter Hk(z) and 
2 /j N

NW e . The subfilters 

Hk(z) are assumed to be symmetric linear phase FIR filters. 

The term 
1 / 2k

NW  results in Hk,i(z) with conjugate-

symmetric coefficients. 

In this paper, we adopt the more compact representation of 

a subfilter as shown in Fig. 2, instead of the butterfly-like 

structure in [1]. 

x
k,i

(n)
, ( )kL

k iH z
x

k+1,2i 
(n)

x
k+1,2i +1 

(n)

Fig. 2   A subfilter block 

The outputs of the subfilter are given by: 
1

1,2 , ,

0

( ) ( ) ( )
k

k i k i k i k

m

x n h m x n L m  (2) 

and:

1,2 1 , 1,2

1

2
( ) ( )k

k i k i k k ix n x n L x n  (3) 

Note that 0,0 ( ) ( )x n x n  is the input to the FFB and 

ˆ ,( ) ( )K ii
y n x n , where î  is the bit-reversed version of i in K

bits. ˆ ( )
i

y n  is the î -th band output of the N-channel FFB 

centred about frequency ˆ2 /i N .

The subfilter 0

0,0 ( )
L

H z  plays the biggest role in defining 

the transition width characteristics of the filter bank, whereas 

the effect of the remaining subfilters are to mask out 

unwanted frequency bands. At this point, it is interesting to 

note how the FFB is a general form of the FFT. If 
1( ) 1kH z z  for all k, and 

1 1

,

2 2( ) 1
K k K ki

k i NH z W z ,

then the FFB is simply reduced to an N-point FFT structure. 

Also, note that the filter bank is lossless, ie. the sum of the 

outputs of all channels is a delayed version of the input. 

3. SUBFILTER MATRIX REPRESENTATION 

In this paper, we propose a matrix equivalent 

representation of the subfilters, signal data and the filtering 

operation in the FFB. As a result, the data is blocked and the 

implementation is regularized. Furthermore, we can make use 

of the highly optimized BLAS package, which operates 

efficiently on vectors and matrices. 

Let us first address the matrix representation of the 

filtering operation in a subfilter. From (2), we can represent 

this mathematical operation efficiently by blocking the data as 

shown:

1( ) ( ) ( )
T

TT

kn n L n
k +1,2i k +1,2i k,i k,i

x x X h  (4) 

and

1

1

1

2

( ) ( )

( ) ( )
k

k

T
T T

k

T
T T

kn L

n n L

n n L

k +1,2i+1 k +1,2i+1

k,i k +1,2i k +1,2i

x x

x x x

 (5) 

for n = 0, Lk, 2Lk, ... , where 

, , ,( ) ( ) ( 1) ( 1)
T

k i k i k i kn x n x n x n L
k,i

x  (6) 

( ) ( ) ( ) ( 1)k k kn n n L n L
k,i k,i k,i k,i

X x x x  (7) 

In using this form, we have easily avoided redundant 

multiplications by zero. The input to the subfilter is organized 

into a k kL  input buffer, Xk,i. Lk samples of the input 

signal, xk,i(n) are shifted into the buffer at a time. 

4. FFB MATRIX IMPLEMENTATION 

In the previous section, the matrix implementations of the 

individual subfilters were discussed. In this section, we 

extend the implementation to cover the FFB as a whole. 

Observing the tree structure of the FFB in Fig. 1, a 

straightforward method of implementation would be to 

allocate 2
k
 sets of Xk,i and hk,i matrices per stage of the filter 

bank. In this section, we propose a method that requires only 

1 set of Xk and hk matrices per stage. Furthermore, it is 

desirable to have the same number of rows for all the Xk

matrices. 

In [5]-[6], a method was proposed to reduce the 

complexity of the FFB by modulating the signal data instead 

of the subfilter coefficients. We shall use this method to 

reduce the subfilters so that hk,i = hk,0 = hk for all i. As a 

result, hk will be a real vector. Note that this results in a more 

efficient implementation by making use of the multiplication 

between the complex data matrix and the real subfilter vector. 

As an illustration, the filtering operation for subfilter 
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, ( )kL

k iH z  can be represented by: 

2 ( 1) / 21

1,2 ,

0

( ) ( ) ( )
kk

j m i

N
k i k k i k

m

x n e h m x n L m  (8) 

where the coefficients of the prototype subfilter are modulated 

by 2 /i N . An alternative method is to modulate the signal 

prior to filtering by 2 / ki NL  and then demodulating after: 

2 ( 1) / 2 2 /1

1,2 ,

0

2 ( ) 2 ( )1

,

0

( ) ( ) ( )

( ) ( )

k k kk

k k
k

k k

j i j L mi L

N N
k i k k i k

m

j n D i j n L m i

NL NL

k k i k

m

x n e h m e x n L m

e h m e x n L m

 (9) 

where ( 1) / 2k k kD L  is the effective delay of the 

interpolated prototype subfilter ( )kL

kH z .

To reduce computations, it was suggested in [5] to 

modulate only the inputs to every alternate subfilters for each 

stage, ie. , ( )kL

k iH z  where i is odd. The modulating signal is 

given by: 
1

'
' 0

2

( )

k
K k

k
k

k

j n D

n e  for k = 1, ... ,K  (10) 

Then the outputs of the filter bank will be baseband 

signals. If desired, these signals can be easily modulated back 

to their original frequencies by applying: 

1

0

ˆ ˆ

ˆ2

( ) '( )

K

k
k

i i

j i n D N

y n e y n  (11) 

The resultant node-modulated FFB (nmFFB) for K=3 and 

N=8  is shown in Fig. 3. 
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Fig. 3    8-channel nmFFB implementation 

Now, let us attempt to arrange the filtering operations for 

all the subfilters at stage k. Since there are 2
k
 sets of Xk,i and 

each has Lk rows, we can group all the Xk,i matrices for the 

same k and arrange as follows: 

( ) ( ) ( 1)

( ) ( ) ( ) ( )

k k k

T
T T T

n n L n L

n n n nkk k,0 k,1 k,2 -1

k k k

X X X X

x x x

 (12) 

Xk then becomes a ( / 2) kN  matrix. Filtering Xk with 

with hk gives the output: 

( ) ( )n nout

k k k
x X h  (13) 

The complementary output should be modulated. In 

performing the node modulation, and noting that k  is 

periodic with period 4Lk, let ( )n
k

 be a length 2
k-1

 column 

vector made up of repeating elements of ( )k n  : 

( ) ( ) ( ) ( )
T

k k kn n n n
k

 (14) 

Then, let the modulating column vector be: 

(0) (2 1)
T

T T

kL
k k k

 (15) 

Further noting that  ( ) ( 2 )k k kn n L , modulation of the 

complementary output can then be achieved by an element-

by-element multiplication of alternating positive and negative 

versions of the modulating vector with the complementary 

output vector ( )nout

k
x . For the sake of a convenient 

representation, we would like to denote this operation using 

matrix multiplications. The modulated vector, 

12( ) 1 ( )k

n
Ln nout out

k,mod k +1 k
x x  where 

k +1
 is a 

diagonal matrix with the diagonal elements made up of the 

column vector 
k +1

. In summary, the modulated version of 

the complementary subfilter output is given by: 

12
1

2
( ) 1 ( )

k
k

k
n

L n Ln nout out

k,mod k k k
x x x  (16) 

The vectors ( )nout

k
x  and ( )nout

k,mod
x  forms the basis of the 

inputs to the next stage, but needs to be reordered. The 

reordering scheme is illustrated in Fig. 4. Fig. 5 shows the 

resultant block diagram implementation of our scheme. 

( )nout

k,mod
x

,mod

,mod

,mod
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x

[1]

[2]

[ / 2]

out

k
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k
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x
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,mod

,mod

[1]

[1]

[ / 4]
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Fig. 4    Reordering scheme 
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Fig. 5    Matrix allocation scheme for the nmFFB 

From Fig. 5, we can observe that there are 2 output vectors 

for every input vector to a subfilter. Thus, at each subsequent 

stage, filtering must be processed twice as frequently as the 

previous stage. A method of achieving this is to make use of 

recursive functions. A sample algorithm is as follows: 

Function Subfilter (xk(n), k)

Filter with hk

Reorder to get ( )n
k +1

x  and 
1

( )
k

n L
k +1

x

Call Subfilter ( ( )n
k +1

x , k+1)

Call Subfilter (
1

( )
k

n L
k +1

x , k+1)

End of Function 

5. RESULTS 

A Fortran program was used to compare the performances 

of a FFB using the normal filtering method and our proposed 

matrix formulation. The computational platform used was an 

Intel Pentium 4-based workstation. The time taken for a 16-

channel FFB sample run with 10K input data samples using 

the normal filter method was approximately 0.0164s, and the 

matrix method took approx 0.0139s. For a 256-channel FFB 

sample run with 10K input data samples, the normal filter 

method required about 0.28s, and the matrix method took 

about 0.1s. 

6. CONCLUSIONS 

The Fast Filter Bank is a generalized form of the sliding 

FFT filter bank. By using Frequency Response Masking 

design methods, it is an efficient implementation of single-

rate filter banks. Although it is highly suitable for hardware 

designs, it is much more complicated to realize it in real-time 

software systems. This is because the number of buffers 

required to store the intermediate data increase exponentially 

with the number of stages. Memory allocation, addressing and 

data handling could result in significant overhead processing. 

A matrix representation of the node-modulated Fast Filter 

Bank was proposed. By blocking the input data, an efficient 

filtering scheme can be implemented using vectors and 

matrices. The data buffers are regularly-sized, with equal 

number of rows. By further making use of easily available 

mathematical packages such as BLAS, which are highly 

optimized for specific target architectures, savings by up to a 

factor of 3 has been observed. 
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