
MATRIX FORMULATION: FAST FILTER BANK

 Lim Yong Ching Lee Jun Wei

 School of Electrical & Electronic Engineering, Department of Electrical and Computer Engineering,

 Nanyang Technological University, National University of Singapore,

 Singapore 639798 Singapore 119260

ABSTRACT

The Fast Filter Bank (FFB) describes a class of tree-structured

filter banks that operate on a frequency response masking

principle. Although the structure is highly regular and

conveniently implemented in hardware designs, real-time

software implementations lead to inefficiencies due to its

branching structure. In this paper, an alternative formulation

of the FFB is proposed in terms of matrix computations. This

allows an efficient approach in its implementation, and

significantly reduces the overall buffer memory size required.

The matrix operations can be carried out using easily

available highly-optimized mathematical software packages,

resulting in improvements in computational speed. Savings of

up to a factor of 3 in the computer time has been observed

during tests on a Pentium 4 computational platform

workstation.

1. INTRODUCTION

In [1], the Fast Filter Bank (FFB) was introduced. The

FFB splits an input signal into frequency-selective channels.

Since its design is based on Frequency Response Masking

(FRM) techniques [2], the filter bank functions primarily as a

highly efficient single-rate filter bank. Since the overall

response of the FFB obtained by summing the outputs of all

the channels is a unit delay, it does not introduce any

distortion to the input signal. The FFB is a general form of the

sliding FFT filter bank [3], and was shown in [4] to have

better computational efficiency over other single-rate

implementations such as the polyphase implementation.

In many filter bank applications, narrow transition widths

between channels and high stopband attenuation are desirable

characteristics. Since the design of the FFB is based on the

FRM principle, it is able to achieve high selectivity while

keeping the order of the prototype subfilters very low. This

reduces coefficient sensitivity issues associated with high

order filters. The FFB is thus highly suitable for

implementation in hardware, and the coefficients can be

quantized using integer programming methods [7]-[8].

However, implementing the FFB using software

programming methods poses some difficulties. Due to the

branching structure of the filter bank, data buffers will have to

be implemented prior to each subfilter. For a filter bank with

many channels, the number of data buffers required becomes

very large. Addressing and manipulating these buffers

becomes cumbersome.

In this paper, a matrix formulation is proposed as an

alternative representation to the filter bank’s operation. The

proposed representation in this paper is based on a modified

form of the FFB, the node-modulated FFB (nmFFB) [5]-[6],

resulting in an efficient and convenient expression. As a

result, only one data buffer is required per stage of the filter

bank. The data is organized into two-dimensional blocks and

are much easier to manipulate. Unlike other types of filter

banks, the matrix formulation for the FFB is rather unusual

because of its structural properties: 1. It consists of a series of

cascaded interpolated subfilters and 2. It has a branching

structure.

In modern computers, the limiting factors in processing

are usually not due to the rate at which arithmetic operations

are performed, but rather due to the efficiency at which data

accesses and transfers to and from memory occurs, [9]-[10].

This is especially relevant in our filter bank situation in which

a lot of data is often manipulated. By blocking the data in

vectors and matrices, data pipelining and efficient memory

usage is facilitated within the hardware.

Furthermore, many software mathematical packages are

easily available for computing matrix operations. These

mathematical packages are highly-optimized for specific

processors and make use of the special facilities and

architectures inherent in the target processors. One such

popular package is the Basic Linear Algebra Subprograms

(BLAS), [11]. A further advantage of using standardized

packages such as BLAS is to promote structured

programming and program portability.

2. BACKGROUND: THE FAST FILTER BANK

The Fast Filter Bank (FFB) was first introduced in [1] as a

very efficient single-rate filter bank. It is a generalized form

of the sliding Fast Fourier Transform (FFT). The FFB and the

FFT is very similar in form and structure when operated as a

filter bank. However, whereas the sliding FFT is actually a

cascade of first-order subfilters, the FFB is a generalized form

consisting of a cascade of higher-order subfilters. As a result,

the FFB presents a filter bank with better frequency response

characteristics than the FFT at a slightly higher complexity.

V - 1330-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

H
0,0

(z4)

H
1,0

(z2)

H
1,1

(z2)

H
2,0

(z)

H
2,1

(z)

H
2,2

(z)

H
2,3

(z)

x(n)

y
0
(n)

y
4
(n)

y
2
(n)

y
6
(n)

y
1
(n)

y
5
(n)

y
3
(n)

y
7
(n)

Fig. 1 An 8-channel Fast Filter Bank

Fig. 1 shows a block diagram of an 8 channel FFB. It

consists of K=3 stages. At each stage k, there are 2
k
 subfilters

which are denoted by , ()kL

k iH z , and these subfilters are

interpolated by a factor of Lk=2
K-k-1

. Hk,i(z) for i>0 are

complex modulated versions of the real-coefficient prototype

subfilter Hk(z) = Hk,0(z):

1 / 2

, () ki i

k i N k NH z W H W z (1)

where i is the bit-reversed version of i in K-1 bits, N=2
K

 is

the number of complex output channels, k is the length of

the prototype subfilter Hk(z) and
2 /j N

NW e . The subfilters

Hk(z) are assumed to be symmetric linear phase FIR filters.

The term
1 / 2k

NW results in Hk,i(z) with conjugate-

symmetric coefficients.

In this paper, we adopt the more compact representation of

a subfilter as shown in Fig. 2, instead of the butterfly-like

structure in [1].

x
k,i

(n)
, ()kL

k iH z
x

k+1,2i
(n)

x
k+1,2i +1

(n)

Fig. 2 A subfilter block

The outputs of the subfilter are given by:
1

1,2 , ,

0

() () ()
k

k i k i k i k

m

x n h m x n L m (2)

and:

1,2 1 , 1,2

1

2
() ()k

k i k i k k ix n x n L x n (3)

Note that 0,0 () ()x n x n is the input to the FFB and

ˆ ,() ()K ii
y n x n , where î is the bit-reversed version of i in K

bits. ˆ ()
i

y n is the î -th band output of the N-channel FFB

centred about frequency ˆ2 /i N .

The subfilter 0

0,0 ()
L

H z plays the biggest role in defining

the transition width characteristics of the filter bank, whereas

the effect of the remaining subfilters are to mask out

unwanted frequency bands. At this point, it is interesting to

note how the FFB is a general form of the FFT. If
1() 1kH z z for all k, and

1 1

,

2 2() 1
K k K ki

k i NH z W z ,

then the FFB is simply reduced to an N-point FFT structure.

Also, note that the filter bank is lossless, ie. the sum of the

outputs of all channels is a delayed version of the input.

3. SUBFILTER MATRIX REPRESENTATION

In this paper, we propose a matrix equivalent

representation of the subfilters, signal data and the filtering

operation in the FFB. As a result, the data is blocked and the

implementation is regularized. Furthermore, we can make use

of the highly optimized BLAS package, which operates

efficiently on vectors and matrices.

Let us first address the matrix representation of the

filtering operation in a subfilter. From (2), we can represent

this mathematical operation efficiently by blocking the data as

shown:

1() () ()
T

TT

kn n L n
k +1,2i k +1,2i k,i k,i

x x X h (4)

and

1

1

1

2

() ()

() ()
k

k

T
T T

k

T
T T

kn L

n n L

n n L

k +1,2i+1 k +1,2i+1

k,i k +1,2i k +1,2i

x x

x x x

 (5)

for n = 0, Lk, 2Lk, ... , where

, , ,() () (1) (1)
T

k i k i k i kn x n x n x n L
k,i

x (6)

() () () (1)k k kn n n L n L
k,i k,i k,i k,i

X x x x (7)

In using this form, we have easily avoided redundant

multiplications by zero. The input to the subfilter is organized

into a k kL input buffer, Xk,i. Lk samples of the input

signal, xk,i(n) are shifted into the buffer at a time.

4. FFB MATRIX IMPLEMENTATION

In the previous section, the matrix implementations of the

individual subfilters were discussed. In this section, we

extend the implementation to cover the FFB as a whole.

Observing the tree structure of the FFB in Fig. 1, a

straightforward method of implementation would be to

allocate 2
k
 sets of Xk,i and hk,i matrices per stage of the filter

bank. In this section, we propose a method that requires only

1 set of Xk and hk matrices per stage. Furthermore, it is

desirable to have the same number of rows for all the Xk

matrices.

In [5]-[6], a method was proposed to reduce the

complexity of the FFB by modulating the signal data instead

of the subfilter coefficients. We shall use this method to

reduce the subfilters so that hk,i = hk,0 = hk for all i. As a

result, hk will be a real vector. Note that this results in a more

efficient implementation by making use of the multiplication

between the complex data matrix and the real subfilter vector.

As an illustration, the filtering operation for subfilter

V - 134

➡ ➡

, ()kL

k iH z can be represented by:

2 (1) / 21

1,2 ,

0

() () ()
kk

j m i

N
k i k k i k

m

x n e h m x n L m (8)

where the coefficients of the prototype subfilter are modulated

by 2 /i N . An alternative method is to modulate the signal

prior to filtering by 2 / ki NL and then demodulating after:

2 (1) / 2 2 /1

1,2 ,

0

2 () 2 ()1

,

0

() () ()

() ()

k k kk

k k
k

k k

j i j L mi L

N N
k i k k i k

m

j n D i j n L m i

NL NL

k k i k

m

x n e h m e x n L m

e h m e x n L m

 (9)

where (1) / 2k k kD L is the effective delay of the

interpolated prototype subfilter ()kL

kH z .

To reduce computations, it was suggested in [5] to

modulate only the inputs to every alternate subfilters for each

stage, ie. , ()kL

k iH z where i is odd. The modulating signal is

given by:
1

'
' 0

2

()

k
K k

k
k

k

j n D

n e for k = 1, ... ,K (10)

Then the outputs of the filter bank will be baseband

signals. If desired, these signals can be easily modulated back

to their original frequencies by applying:

1

0

ˆ ˆ

ˆ2

() '()

K

k
k

i i

j i n D N

y n e y n (11)

The resultant node-modulated FFB (nmFFB) for K=3 and

N=8 is shown in Fig. 3.

x(n) H
0
(z4)

H
1
(z2)

H
1
(z2)

H
2
(z)

H
2
(z)

H
2
(z)

H
2
(z)

0 4j n D
e

0 1 2j n D D
e

y
0
'(n)

y
4
'(n)

y
2
'(n)

y
6
'(n)

y
1
'(n)

y
5
'(n)

y
3
'(n)

y
7
'(n)

0 1 2j n D D D
e

Fig. 3 8-channel nmFFB implementation

Now, let us attempt to arrange the filtering operations for

all the subfilters at stage k. Since there are 2
k
 sets of Xk,i and

each has Lk rows, we can group all the Xk,i matrices for the

same k and arrange as follows:

() () (1)

() () () ()

k k k

T
T T T

n n L n L

n n n nkk k,0 k,1 k,2 -1

k k k

X X X X

x x x

 (12)

Xk then becomes a (/ 2) kN matrix. Filtering Xk with

with hk gives the output:

() ()n nout

k k k
x X h (13)

The complementary output should be modulated. In

performing the node modulation, and noting that k is

periodic with period 4Lk, let ()n
k

 be a length 2
k-1

 column

vector made up of repeating elements of ()k n :

() () () ()
T

k k kn n n n
k

 (14)

Then, let the modulating column vector be:

(0) (2 1)
T

T T

kL
k k k

 (15)

Further noting that () (2)k k kn n L , modulation of the

complementary output can then be achieved by an element-

by-element multiplication of alternating positive and negative

versions of the modulating vector with the complementary

output vector ()nout

k
x . For the sake of a convenient

representation, we would like to denote this operation using

matrix multiplications. The modulated vector,

12() 1 ()k

n
Ln nout out

k,mod k +1 k
x x where

k +1
 is a

diagonal matrix with the diagonal elements made up of the

column vector
k +1

. In summary, the modulated version of

the complementary subfilter output is given by:

12
1

2
() 1 ()

k
k

k
n

L n Ln nout out

k,mod k k k
x x x (16)

The vectors ()nout

k
x and ()nout

k,mod
x forms the basis of the

inputs to the next stage, but needs to be reordered. The

reordering scheme is illustrated in Fig. 4. Fig. 5 shows the

resultant block diagram implementation of our scheme.

()nout

k,mod
x

,mod

,mod

,mod

[1]

[2]

[/ 2]

out

k

out

k

out

k

x

x

x N

()nout

k
x

[1]

[2]

[/ 2]

out

k

out

k

out

k

x

x

x N

reorder

,mod

,mod

[1]

[1]

[/ 4]

[/ 4]

out

k

out

k

out

k

out

k

x

x

x N

x N

()n
k +1

x

,mod

,mod

[1 / 4]

[1 / 4]

[/ 2]

[/ 2]

out

k

out

k

out

k

out

k

x N

x N

x N

x N

1
()

k
n L

k +1
x

Fig. 4 Reordering scheme

V - 135

➡ ➡

()n
k

X()n
k

x

k
h

()kn D
k

x

()nout

k
x

()nout

k
x R

e
o
rd

e
r

a
n
d

 M
a
p

1()kn L
k +1

x

()n
k +1

X

delay

()n
k +1

x ()n
K-1

X

K-1
h

0̂

2̂

'()

'()

y n

y n

1̂

3̂

'()

'()

y n

y n

121 k

n
L

k +1
1

n

Fig. 5 Matrix allocation scheme for the nmFFB

From Fig. 5, we can observe that there are 2 output vectors

for every input vector to a subfilter. Thus, at each subsequent

stage, filtering must be processed twice as frequently as the

previous stage. A method of achieving this is to make use of

recursive functions. A sample algorithm is as follows:

Function Subfilter (xk(n), k)

Filter with hk

Reorder to get ()n
k +1

x and
1

()
k

n L
k +1

x

Call Subfilter (()n
k +1

x , k+1)

Call Subfilter (
1

()
k

n L
k +1

x , k+1)

End of Function

5. RESULTS

A Fortran program was used to compare the performances

of a FFB using the normal filtering method and our proposed

matrix formulation. The computational platform used was an

Intel Pentium 4-based workstation. The time taken for a 16-

channel FFB sample run with 10K input data samples using

the normal filter method was approximately 0.0164s, and the

matrix method took approx 0.0139s. For a 256-channel FFB

sample run with 10K input data samples, the normal filter

method required about 0.28s, and the matrix method took

about 0.1s.

6. CONCLUSIONS

The Fast Filter Bank is a generalized form of the sliding

FFT filter bank. By using Frequency Response Masking

design methods, it is an efficient implementation of single-

rate filter banks. Although it is highly suitable for hardware

designs, it is much more complicated to realize it in real-time

software systems. This is because the number of buffers

required to store the intermediate data increase exponentially

with the number of stages. Memory allocation, addressing and

data handling could result in significant overhead processing.

A matrix representation of the node-modulated Fast Filter

Bank was proposed. By blocking the input data, an efficient

filtering scheme can be implemented using vectors and

matrices. The data buffers are regularly-sized, with equal

number of rows. By further making use of easily available

mathematical packages such as BLAS, which are highly

optimized for specific target architectures, savings by up to a

factor of 3 has been observed.

7. REFERENCES

[1] Y.C Lim and B. Farhang-Boroujeny, ``Fast Filter Bank

(FFB) '', IEEE Trans. on Circuits and Systems II: Vol. 39, No. 5,

pp. 316-318, May, 1992.

[2] Y.C Lim, ``Frequency Response Masking Approach for the

Synthesis of Sharp Linear Phase Digital Filters'', IEEE Trans. on

Circuits and Systems: Vol. 33, No. 4, pp. 357-364, Apr, 1986.

[3] B. Farhang-Boroujeny and Y.C Lim, ``A Comment on the

Computational Complexity of the Sliding FFT'', IEEE Trans. on

Circuits and Systems II: Vol. 39, No. 12, pp. 875-876, Dec 1992.

[4] Y.C Lim and B. Farhang-Boroujeny, ``Analysis and

Optimum Design of the FFB'', IEEE ISCAS 1994: Vol. 2, pp.

509-512, 1994.

[5] J.W. Lee and Y.C. Lim, “Efficient Implementation of Real

Filter Banks using Frequency Response Masking Techniques”,

IEEE APCCAS 2002, Vol. 1, pp 69-72, 2002.

[6] J.W. Lee and Y.C. Lim, “Designing the Fast Filter Bank

with a Minimum Complexity Criterion”, IEEE ISSPA Paris 2003,

Vol. 2, pp 279-282.

[7] L.R Rabiner, “Linear program design of Finite Impulse

Response (FIR) digital filters”, IEEE Trans. On Audio and

Electroacoustics, Vol. AU-20, pp. 280-288, Oct. 1972.

[8] D. Kodek, “Design of optimal finite wordlength FIR

digital filters using integer programming techniques”, IEEE

Trans. on ASSP, Vol. ASSP-28, pp.304-308, June 1980.

[9] David R. Wille, Advanced Scientific Fortran, John Wiley

& Sons, 1995.

[10] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele

Jr., and M.E. Zosel, The High Performance Fortran Handbook,

The MIT Press, 1994.

[11] http://www.netlib.org/blas/

* The authors would like to express their gratitude towards the

Singapore Millennium Foundation for their funding and support.

V - 136

➡ ➠

