
OPTIMUM ADDRESS POINTER ASSIGNMENT FOR DIGITAL SIGNAL PROCESSORS

Bernhard Wess

Institute of Communications
and Radio-Frequency Engineering

Vienna University of Technology, Austria
bernhard.wess@nt.tuwien.ac.at

Thomas Zeitlhofer

Institute of Communications
and Radio-Frequency Engineering

Vienna University of Technology, Austria
thomas.zeitlhofer@nt.tuwien.ac.at

ABSTRACT

Generating optimum data memory layouts and address poin-
ter assignments for digital signal processors are hard com-
binatorial optimization problems. In this paper, it is shown
that for fixed memory layouts and in contrast to traditional
heuristic approaches optimum address pointer assignments
can be generated easily. The computational complexity de-
pends exponentially just on the number of address point-
ers. The proposed technique is applied to a large bench-
mark suite. Experimental results for three address pointers
show that optimum solutions can be generated in almost all
cases (99.98%) within one second. Since a large number
of address pointers may be intractable, an additional heuris-
tic pruning technique with nearly optimum performance is
proposed.

1. INTRODUCTION

Digital signal processors (DSPs) have dedicated address gen-
eration units (AGUs) that support address computation in
parallel to data-path operations. AGUs support indirect ad-
dressing with address pointer updates by some fixed values
without adversely affecting performance. Typical offset val-
ues for these zero-cost increment/decrement operations are
±1. Some AGU architectures provide dedicated offset reg-
isters. Once such a register is initialized by a value m, ad-
dress pointers can be updated by offset m at no extra cost.
Minimizing addressing overhead requires to carefully place
program variables in data memory and to look for optimized
address pointer assignments. Unfortunately, these problems
are NP -hard.

2. OFFSET ASSIGNMENT

Let V be a set of program variables. Each variable vi ∈ V

is identified by index i ∈ {1, 2, . . . , N} with N = |V |.
A variable access stream S = [vs(1), vs(2), . . . , vs(M)] is

defined by a function

s : {1, 2, . . . ,M} → {1, 2, . . . , N} (1)

where M denotes the stream length and N ≤ M . The im-
age s(�) of any � ∈ {1, 2, . . . ,M} defines the program vari-
able vs(�) on position � in the access stream S.

A memory layout is a permutation

π : {1, 2, . . . , N} → {1, 2, . . . , N} (2)

that assigns addresses to all program variables which ap-
pear in the access stream S. Let us assume that an address
register points to vi and it should be used for accessing vj .
To this end, the address pointer has to be modified by ad-
dress offset π(j) − π(i). AGUs of DSPs support zero-cost
address pointer updates for a limited set of offset values.
Obviously, costs can be minimized by memory layout op-
timization. This problem is denoted as offset assignment
(OA). OA for a single address pointer with zero-cost update
range ±1 is called simple offset assignment (SOA). Let cij

with i, j ∈ {1, 2, . . . , N} be a cost value for redirecting an
address pointer from address i to the new address j. For
SOA, cij is defined by

cij =
{

0 for |j − i| ≤ 1,

1 otherwise.
(3)

Additionally, let tSij specify how often address j is accessed
right after address i in S. For a single address pointer, the
address computation costs can be expressed by

C1 =
N∑

i=1

N∑
j=1

cijt
S
π(i)π(j). (4)

Modifying π such that C1 becomes a minimum in Equ. 4
is a quadratic assignment problem (QAP) [1]. Since it is
NP -hard, optimum solutions can be found just for small
values of N . An efficient SOA heuristic has been proposed

V - 1210-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

in [2] that looks for a minimum-weighted path in the access
graph defined by the access stream S. Meanwhile several
improvements have been proposed. As shown in [3], SOA
combined with variable coalescing allows to produce best
results compared to currently existing SOA techniques. An
efficient OA algorithm for zero-cost offset range ±2 is dis-
cussed in [4] that produces an optimum memory layout if
there is a C1 = 0 solution, otherwise a layout is generated
with minimized C1.

f

e
d

c
b

a

6

5

4

3

2

1

·

(a) (b)

Fig. 1. a) Memory layout for V = {a, b, c, d, e, f}, b) ad-
dress offsets for access stream S = [d, c, c, d, b, e, a, f].

3. GENERAL OFFSET ASSIGNMENT

General offset assignment (GOA) is the problem of optimiz-
ing the memory layout for multiple address pointers. In case
of GOA, both memory layout and address pointer assign-
ment are optimized. For N program variables N ! different
memory layouts exist. Assigning address pointers can be
regarded as K-coloring the access stream S. For K ho-
mogeneous address pointers, an optimum solution has to be
found out of KM−1 different colorings by simple exhaus-
tive search. A coloring of S is a partition that decomposes
{1, 2, . . . ,M} into K disjoint subsets. Each subset defines
an access stream

Sk = [vsk(1), vsk(2), . . . , vsk(Mk)] (5)

with

sk : {1, 2, . . . ,Mk} → {1, 2, . . . ,M} and
K∑

k=1

Mk = M.

For each Sk, all elements appear in the same relative order
as in S.

We calculate the overall address computation costs by

CK =
K∑

k=1

N∑
i=1

N∑
j=1

cijt
Sk

π(i)π(j). (6)

The goal is to minimize CK by optimizing the memory lay-
out π and the partitioning of S. This optimization problem

consists of K interdependent QAPs with a solution space
size of N !KM−1 which is far too big to be practicable even
for small numbers of K, N , and M . In [5], simulated
annealing (SA) is applied for solution space exploration.
Heuristically reducing GOA to K SOA problems by de-
composing variable set V into disjoint subsets are proposed
in [2, 6]. These techniques are restricted to the offset cost
function in Equ. 3.

4. OPTIMUM ADDRESS POINTER ASSIGNMENT

GOA consists of memory layout generation in conjunction
with address pointer assignment (APA). For the following
discussion we assume that the memory layout π has been
optimized in a first step. Now our goal is to generate an
optimum APA for a fixed layout π. We define the total ad-
dressing costs C as

C = I + (K + 1)CK (7)

where I are the initialization costs. We add 1 to C if a new
pointer is initialized. CK represents the number of address
pointer reloads. The definition C in Equ. 7 ensures that a
minimum number of address pointers and a minimum num-
ber of reloads are required.

We propose an algorithm that takes as input the variable
access stream ,a fixed memory layout, and produces an opti-
mum APA. This algorithm builds an assignment tree where
all nodes at the same level correspond to different address
pointer settings at some point in the access stream. Each
path in the tree from the root to a leaf is a mapping of mem-
ory accesses to address pointers.

Fig, 2 shows the first three levels of the assignment tree
for the variable access stream S = [d, c, c, d, b, e, a, f] with
K = 2 pointers and memory layout π that is shown in
Fig, 1. Let us assume that cij is defined by Equ. 3. The

1 2 2 2c

1 2c

1d

f
e
d
c
b
a

f
e
d
c
b
a

f
e
d
c
b
a

f
e
d
c
b
a

(IV)(III)(II)(I)

Fig. 2. Assignment tree pruning.

V - 122

➡ ➡

pointer assignment is indicated by the node color and the
numbers inside the nodes are the total addressing costs de-
fined by Equ. 7. For homogeneous address registers, the
pointer settings (II) and (III) in Fig, 2 are equivalent. Within
a group of equivalent nodes, only one lowest-cost node needs
to be kept when continuing with the assignment tree con-
struction. Ties are broken arbitrarily. The complete assign-
ment tree for access stream S = [d, c, c, d, b, e, a, f] with
K = 2 pointers and memory layout π in Fig, 1 is shown in
Fig, 3.

13 11 11 11 5 2 8 8 14 14

10 8 8 8 2 5 11 11

7 5 5 2 8 8

4 2 2 5 5 5

1 2 2 2 2 2

1 2 2 2

1 2

1d

c

c

d

b

e

a

f

Fig. 3. Optimum assignment for two address pointers indi-
cated by a minimum weighted path.

The coloring of the nodes on the path from the root to
the lowest cost node yields the optimum address pointer as-
signment with

C2 = �C/(K + 1)� = 0

pointer reloads and

I = C mod (K + 1) = 2

pointer initializations. The variable access stream S is par-
titioned into the sub-streams

S1 = [d, c, c, b, a] and S2 = [d, e, f].

Note that in contrast to S, all address offsets in layout π are
in the zero-cost range both for S1 and S2.

The maximum width w of the assignment tree is bounded
by

w ≤
(

N + K

K

)
− 1 < NK . (8)

To verify this, consider all nodes at the same tree level, that
is, at a given �̃ in the access stream. Each node corresponds

to a specific address pointer setting where an address pointer
is either directed to a program variable or is uninitialized
(N + 1 possible assignments). The costs for succeeding
accesses � > �̃ just depend on the contents of the address
pointers at access �̃. Since we assume a homogeneous ad-
dress pointer file, any two tree nodes are equivalent if their
corresponding address pointer settings are equal except for
permutations. So for K address pointers, the number of
nodes that have to be distinguished is given by the num-
ber of K-combinations with repetition of N + 1 elements.
Because we start with one pointer initialized, the combina-
tion of all pointers uninitialized does not appear as shown
in Equ. 8.

A comparison of computational complexity for simple
exhaustive search (Sec. 3) and our proposed approach is
given in Fig, 4. The ratio M

N = 1.52 corresponds to the
average ratio found in the OffsetStone benchmarks [7].

 2 3 4 5 6 7 8 9 10
 1

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 1e+80

K

KM−1

M · NK

M ·
(

N + K

K

)

Fig. 4. Computational complexity bounds according to
Equ. 8 for an access stream of length M = 1.52 · N and
N = 50 variables.

5. EXPERIMENTAL RESULTS

We applied our optimum approach to all (55298) sequences
of the OffsetStone benchmarks [7]. For K = 3 address
pointers, we are able to compute optimum solutions for all
sequences but one. The seven most complex examples are
shown in Tab. 1. The computation of optimum address poin-
ter assignments takes one second or less for each of the other
examples. Note, that access streams as given in Tab. 1 are
not typical as 99.98% of the OffsetStone examples are of
less complexity. We just present the most complex exam-
ples to demonstrate the limits of our approach.

The computational complexity is mainly determined by
the number of available pointers (Fig, 4). For a larger num-
ber of pointers (≥ 8) we found that access streams with

V - 123

➡ ➡

N M time [s]1

94 189 5
161 322 31
243 506 130
388 776 461
432 864 564
441 873 675
678 3440 –2

Table 1. Most complex examples, K = 3.

N ≥ 25 may become intractable. In this case we can ap-
ply a simple heuristic to achieve near-optimum results. The
width of the search tree is pruned by considering only W

nodes with minimum accumulated path costs.

opt. W = 100 W = 10
N M

C C time [s] C time [s]
94 189 187 187 < 1 187 < 1

161 322 1 1 1 1 < 1
243 506 83 83 1 127 < 1
388 776 267 267 1 267 < 1
432 864 91 91 1 91 < 1
441 873 91 91 2 91 1
678 3440 – 6867 3 7083 1

Table 2. Most complex examples, K = 3, heuristically
pruned search tree width W .

The effect of heuristically pruning is shown in Tab. 2.
Note, in these examples the memory layout has not been
optimized prior to address pointer assignment. Therefore
optimum cost values may be arbitrarily large. We applied
rather strict bounds W = 100 and W = 10. Nevertheless,
for W = 100 the algorithm still generates optimum solu-
tions in all cases where the minimum total addressing costs
are known. Even for W = 10 the total addressing costs are
increased just in two cases.

6. CONCLUSIONS

We have presented an optimum approach for the address
pointer assignment problem. This allows to find address
pointer assignments with minimum cost given a fixed mem-
ory layout of program variables. An optimum pruning tech-
nique allows us to drastically reduce the search space com-
pared to simple exhaustive search strategies. So in contrast
to traditional approaches that apply heuristics, our new ap-
proach generates optimum solutions for typical problems.

1Experiments are computed on a PC with CPU frequency 1.4GHz.
2Tree size exceeded a reasonable maximum.

The proposed algorithm has been successfully applied to
real-world examples from the OffsetStone benchmarks. For
three address pointers all but one of these examples can
be solved optimally. Additionally we presented a heuristic
pruning technique that produces near-optimum results for
problems of increased complexity.

7. REFERENCES

[1] B. Wess and M. Gotschlich, “Optimal DSP memory
layout generation as a quadratic assignment problem,”
in Proc. IEEE Int. Symp. on Circuits and Systems, Hong
Kong, June 1997, vol. 3, pp. 1712–1715.

[2] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang, “Storage assignment to decrease code size,”
in Proc. ACM Conf. on Programming Language Design
and Implementation, June 1995, pp. 186–195.

[3] D. Ottoni, G. Ottoni, G. Araujo, and R. Leupers, “Im-
proving offset assignment through simultaneous vari-
able coalescing,” in Proc. 7th Int. Workshop on Soft-
ware and Compilers for Embedded Systems, Vienna,
September 2003, pp. 285–297.

[4] B. Wess and M. Gotschlich, “Constructing memory lay-
outs for address generation units supporting offset 2 ac-
cess,” in Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Munich, April 1997, vol. 1, pp.
683–686.

[5] B. Wess, “Minimization of data address computation
overhead in DSP programs,” Kluwer Design Automa-
tion for Embedded Systems, vol. 4, pp. 167–185, March
1999.

[6] R. Leupers and P. Marwedel, “Algorithms for ad-
dress assignment in DSP code generation,” in
Proc. IEEE Int. Conf. on Computer-Aided Design, San
Jose, November 1996, pp. 109–112.

[7] R. Leupers, “Offset assignment showdown: Evalu-
ation of DSP address code optimization algorithms,”
in 12th International Conference on Compiler Con-
struction (CC), Warsaw (Poland), April 2003, Springer
Lecture Notes on Computer Science, LNCS 2622,
http://www.address-code-optimization.org.

V - 124

➡ ➠

