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ABSTRACT 

This paper proposes several techniques for optimizing the 
JPEG2000 binary arithmetic encoder on Very Long 
Instruction Word (VLIW) architectures. Binary 
arithmetic coding (BAC) contains a large amount of 
conditional and sequential processing steps that make 
parallelism on VLIW devices difficult to realize. The 
purpose of this paper is to illustrate an optimized software 
implementation that can software pipeline on a VLIW 
device. The Texas Instruments (TI) TMS320C64x Digital 
Signal Processor (DSP) was chosen as the 
implementation platform. Results of our optimized code 
show a 2.4x performance speed-up over a straightforward 
implementation of the arithmetic encoder as defined in 
the JPEG2000 standard. 

1. INTRODUCTION 

The JPEG2000 image coding standard [2] embodies the 
latest advances in still image compression technology. 
Among its benefits, JPEG2000 provides superior 
compression over JPEG at low bit-rates, progressive 
transmission, and resilience to transmission errors [3]. 
Embedded Block Coding with Optimized Truncation 
(EBCOT) and binary arithmetic coding are the most 
complex and computationally intensive modules of the 
JPEG2000 Standard [4]. These modules, in their inherent 
form, pose significant challenges to exploiting the 
inherent instruction-level parallelism of software-
programmable VLIW devices. This is due to the fact that 
arithmetic coding algorithms contain sequential 
processing steps, nested conditional operations, and inner 
while loops that prevent efficient software pipelined 
schedules. To overcome this bottleneck, system designers 
typically tend toward custom hardware solutions [1]. 
Figure 1 shows the C64x VLIW-based architecture. The 
C64x’s eight functional units allow it to process up to 
eight instructions in parallel. An efficient software 
pipelined loop will maximize usage of these resources.   
This paper focuses on techniques that will allow for an 

efficient software   implementation of the arithmetic 
encoder on commercial-off-the-shelf DSPs such as the 
C64x. 

The JPEG2000 binary arithmetic encoder is 
characterized by four functions, Code MPS, Code LPS, 
RENORME, and BYTEOUT [2]. These functions are 
executed based on the context state of the arithmetic 
encoder, its interval width (A), and codeword value (C). 
The encoder must decide if a Most Probable Symbol 
(MPS) or Least Probable Symbol (LPS) is encoded, 
whether to renormalize (RENORME) the interval width 
and codeword, and determine if a compressed byte needs 
to be sent to the bitstream (BYTEOUT). Adding to the 
complexity of the arithmetic encoder, the BYTEOUT 
procedure is embedded within the RENORME procedure, 
which in turn, is embedded in both the Code LPS and 
Code MPS procedures. 

The following sections discuss several 
optimization steps which enable a fast software 
implementation of the arithmetic encoder. Section 2 
describes the principles of software pipelining and how it 
applies to this implementation. Section 3 describes 
decoupling coefficient bit modeling (CBM) and 
arithmetic encoding. Section 4 describes the elimination 
of the inner while loop associated with renormalization. 
Section 5 discusses how to separate the BYTEOUT 
procedure from encoding.  Section 6 discusses how to 
software pipeline the arithmetic encoder for the C64x 
DSP. Section 7 compares the execution speed of the 
optimized encoder with the straightforward 
implementation. 

2. SOFTWARE PIPELINING 

To obtain a fast implementation, the arithmetic encoder 
has to be efficiently software pipelined. Software 
pipelining is a scheduling technique that allows the 
parallel execution of multiple iterations of a loop [8,9]. 
This leverages the parallel architecture of VLIWs. The 
idea is to start executing a subsequent iteration of a loop 
before the previous one has completed. By finding the 
minimum initiation interval, the number of cycles that 
must execute between successive iterations, performance  
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Figure 1: C64x VLIW-based DSP Architecture

can be maximized. An efficient pipelined schedule 
however, is prevented by the overall structure of the 
coefficient bit modeler, which contains nested loops, 
nested conditional execution paths, and long dependency 
paths. The optimizations described in the following 
sections eliminate these obstacles by restructuring the 
algorithm. 

3. DECOUPLING THE COEFFICIENT BIT 
MODELER FROM THE ARITHMETIC ENCODER 

In a straightforward implementation, the coefficient bit 
modeler would generate a single decision bit (D) and 
context number (CX) that are then passed to the 
arithmetic encoder. The arithmetic encoder would process 
one CX/D pair at a time. However, JPEG2000 does not 
require coupling of the coefficient bit modeler and 
arithmetic encoder [6]. To bring the arithmetic encoder 
into an efficient loop form, bit modeling and arithmetic 
encoding are decoupled. CX/D pairs are queued up in a 
buffer as they are generated, and later sent to the 
arithmetic encoder for processing. This allows the 
arithmetic encoder to operate on multiple CX/D pairs at 
once, which reduces the function call overhead, and 
opens up the possibility of software pipelining the loop in 
a later optimization step. 

4. ELIMINATING THE RENORME WHILE LOOP 

To qualify the arithmetic encoder for pipelining, inner 
loops have to be eliminated. The arithmetic encoder 
contains a renormalization (RENORME) while loop 
which is used to keep the interval width A above 0x8000. 
In the loop, the value of A is left-shifted by one and tested 
to see if (A < 0x8000) during each iteration. Figure 2 
shows a reproduction of the RENORME flowchart found 
in Annex C of the JPEG2000 Standard [2]. If the 
processor implements an instruction that can determine 
the number of left-most zeros present in A, this while 
loop can be eliminated. Renormalization can then be  
realized by perfoming the appropriate number of bit-shifts  

RENORME

A = A << 1
C = C << 1
CT =  CT- 1

CT = 0?

CALL BYTEOUT

(A & 0x8000) = 0?

Done

True

False

False

True

Figure 2: RENORME Procedure  

in a single operation. In the hardware based arithmetic 
encoder proposed in [5], a “leading zero detecter” was 
created to determine the amount of left-most zeros in the 
A register. In our implementation, the C64x instruction 
LMBD is used [7]. Tests are included to prevent 
overshifting of A and C in the event that a byte from 
codeword C needs to be written to the bitstream. Figure 3 
shows the new structure of RENORME. 

5. DECOUPLING ENCODING AND BYTEOUT

It can be observed that the BYTEOUT procedure is 
executed at a much lower rate than actual symbol 
encoding. Only after a certain number of bits have been 
encoded will the BYTEOUT procedure append encoded 
bits to the bitstream. In our tests, it was found that the 
number of times BYTEOUT needed to be called was on 
average 5% of the total number of symbols encoded. 
Therefore, further optimization should be targeted at 
encoding rather than the BYTEOUT function. This is 
made possible by removing BYTEOUT from the 
encoding procedure and merging it with renormalization 
into a separate loop. These two loops are created in a way 
such that renormalization is performed in both. The first 
of the two loops will encode a binary decision based on 
the Code LPS and Code MPS procedures. 
Renormalization will occur if necessary. This loop will be 
refered to as the “encoding loop”. If a BYTEOUT needs 
to occur, the encoding loop is exited. The second loop, 
which will be referred to as the “output loop”, is entered 
to perform a BYTEOUT and complete renormalization 
(RENORME). The RENORME in the output loop will 
execute any left-shifts of A and C that were not completed 
prior to calling BYTEOUT. The encoding loop can now 
be iterated as often as possible until it is detected that a  
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L_Shift = LMBD(1, A) - 16
L_Shift = MIN2(L_Shift, CT)

CT = CT - L_Shift
A = A << L_Shift
C =  C << L_Shift

RENORME

Done

Figure 3: Modified RENORME

byte has to be output. The encoding loop is then 
terminated and the output loop is entered. After that, 
encoding resumes. 

Removing the operations for BYTEOUT from 
the encoding procedure has the additional benefit of 
making the encoding loop more efficient. Cycle penalties 
for exiting the encoding loop to enter the output loop are 
negligible, since this occurs very infrequently. Figure 3 
shows the modified RENORME function. The test (CT 
== 0?) from Figure 2 now becomes an exit condition for 
the encoding loop instead of a test embedded in 
RENORME. 

6. ENCODING LOOP OPTIMIZATION 

Software pipelining of the encoding loop will allow for 
the loads of CX/D pairs, lookup table values, and context 
states for subsequent iterations to occur in parallel with 
encoding operations. This will reduce the number of 
cycles needed to encode a single CX/D pair because the 
latencies associated with loads from memory can be 
hidden within encoder computations. 

Since computations on the arithmetic encoder 
interval width A and codeword C for a future iteration 
cannot occur until the current iteration has completed its 
update of A and C, a limit is placed on the minimum 
initiation interval that can be achieved in a pipelined 
loop. The remaining optimization steps shorten existing 
recurrence paths as to allow for a small initiation interval 
and thus, a more efficient software pipelined schedule. 

6.1. Exploiting Parallelism Across Conditional 
Execution Paths 

The arithmetic encoder contains many nested conditional 
statements that limit parallelism. Algorithm restructuring 
was performed to minimize the number of different 
conditional execution paths and introduce more 
parallelism. This was achieved by determining which 
instructions could be executed speculatively, and 
minimizing the number of predication flags [9] and 
conditional expressions required. In this regard, several 

observations were made that allowed for simplification of 
the control flow. 

All conditions that direct the code flow are 
computed at the beginning and then used to predicate the 
encoding operations [9]. The majority of the code flow is 
directed by conditions which are based on whether a LPS 
or MPS is coded, and the value of A with respect to Qe 
and the constant 0x8000. Some of these conditions can be 
computed in parallel. The two computations of the 
arithmetic encoder, (A = Qe) and (C = C + Qe), are 
common to Code MPS and Code LPS. 

The C64x provides predicate registers which will 
enable the conditional execution of operations based on 
the Boolean value of associated conditions [7]. Using 
predicated execution effectively collapses the Code MPS 
and Code LPS procedures into a single process, 
shortening the recurrence path and thus, allowing for 
more efficient software pipelining of the encoding loop. 

6.2. Optimized Data Packing 

An optimum storage format in memory was devised for 
the context state data which minimizes the number of 
operations required to load, store, and extract the 
individual elements. The probability look-up table index 
and MPS switch values are packed into one byte. To also 
make context state updates more efficient, the probability 
look-up table is structured in such a way that an updated 
MPS switch can be easily packed into the registers 
containing the next index (NMPS/NLPS). 

6.3. Eliminating Memory Dependencies 

In the special case that a context number CX from 
iteration i is equal to the CX from iteration (i-1), and the 
CX state was updated in iteration (i-1), a memory 
dependency will exist. This is because iteration i must use 
the CX state updated in iteration (i-1). This memory 
dependency is eliminated by obtaining the updated state 
data for the next iteration directly from the register it was 
written to in the previous iteration, rather than from 
memory. This effectively replaces the load operation (and 
all associated delay slots) in the recurrence path with a 
simple register move operation. Note that there is no 
dependency if the CX from iteration i is different from 
the CX of iteration (i-1). In this case, the context state for 
the next iteration can be read before the context state of 
the previous iteration is updated in memory. 

6.4. Software Pipelined Encoder Loop 

Figure 4 is a graphical representation of the loop pipeline 
that shows how iterations overlap. The software pipelined 
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encoder loop will encode a CX/D pair with loads for 
subsequent CX/D pairs, context states, and probabilities 
occurring in parallel. In the event that a BYTEOUT 
becomes necessary, an early exit of the encoding loop is 
forced and the output loop (containing BYTEOUT and 
RENORME) is entered. The pipelined loop contains 
instructions to preserve live-out variables in the event that 
the encoding loop is exited. This will allow for the 
reversal of any loads, stores, and computations for future 
iterations that should not have occurred. In the event that 
a byte needs to be written to the bitstream, the output loop 
is entered. If there are still remaining CX/D pairs to be 
encoded after a BYTEOUT, the encoding loop is re-
entered.

7. ARITHMETIC ENCODER PERFORMANCE 

A straightforward implementation of the arithmetic 
encoder as defined in Annex C of the JPEG2000 
Standard text [2], and our optimized version, were 
benchmarked on the TMS320C6416 DSP. The software 
pipelined encoding loop operates at a rate of 13 cycles per 
context/decision pair. The number of cycles spent on the 
output loop and pipeline re-initialization is approximately 
71. Since about 95% of the processing occurs in the 
encoding loop, the 71 cycles spent outside of the 
pipelined kernel has a minimal effect on overall 
performance. Our results show an average 2.4x speed-up 
when comparing our optimized kernel to the 
straightforward implementation. The tests were 
performed on several photographic images using a 
JPEG2000 encoder with a 9/7 lifting-based irreversible 
wavelet filter, and YUV 4:4:4 color input images. The 
arithmetic encoder was called once per coding pass 
(significance, refinement, cleanup), and terminated after 
encoding one codeblock. Results are shown in Table 1. 

8. CONCLUSION 

Techniques for software pipelining the JPEG2000 binary 
arithmetic encoder were discussed. The arithmetic 
encoder was implemented on a C64x DSP to show the  

Image 
512x512

Original 
(Cycles) 

Optimized 
(Cycles) 

Com-
pression 

Speed
-up 

Lena 35,129,408 14,538,352 15.1 2.4x 
Peppers 44,042,024 18,216,192 12.6 2.4x 
Baboon 92,802,832 38,775,032 4.6 2.4x 

Table 1. Arithmetic Encoder Comparison  

benefits of the described optimizations. A performance 
boost of 2.4x over a straightforward implementation was 
shown. Some of the described optimization techniques 
may also be applied to the JPEG2000 binary arithmetic 
decoder and to some extent, other arithmetic coders such 
as those used in H.264. 
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