
OPTIMIZING THE JPEG2000 BINARY ARITHMETIC ENCODER FOR
VLIW ARCHITECTURES

Brian Valentine, Oliver Sohm

Texas Instruments, Inc.

ABSTRACT

This paper proposes several techniques for optimizing the
JPEG2000 binary arithmetic encoder on Very Long
Instruction Word (VLIW) architectures. Binary
arithmetic coding (BAC) contains a large amount of
conditional and sequential processing steps that make
parallelism on VLIW devices difficult to realize. The
purpose of this paper is to illustrate an optimized software
implementation that can software pipeline on a VLIW
device. The Texas Instruments (TI) TMS320C64x Digital
Signal Processor (DSP) was chosen as the
implementation platform. Results of our optimized code
show a 2.4x performance speed-up over a straightforward
implementation of the arithmetic encoder as defined in
the JPEG2000 standard.

1. INTRODUCTION

The JPEG2000 image coding standard [2] embodies the
latest advances in still image compression technology.
Among its benefits, JPEG2000 provides superior
compression over JPEG at low bit-rates, progressive
transmission, and resilience to transmission errors [3].
Embedded Block Coding with Optimized Truncation
(EBCOT) and binary arithmetic coding are the most
complex and computationally intensive modules of the
JPEG2000 Standard [4]. These modules, in their inherent
form, pose significant challenges to exploiting the
inherent instruction-level parallelism of software-
programmable VLIW devices. This is due to the fact that
arithmetic coding algorithms contain sequential
processing steps, nested conditional operations, and inner
while loops that prevent efficient software pipelined
schedules. To overcome this bottleneck, system designers
typically tend toward custom hardware solutions [1].
Figure 1 shows the C64x VLIW-based architecture. The
C64x’s eight functional units allow it to process up to
eight instructions in parallel. An efficient software
pipelined loop will maximize usage of these resources.
This paper focuses on techniques that will allow for an

efficient software implementation of the arithmetic
encoder on commercial-off-the-shelf DSPs such as the
C64x.

The JPEG2000 binary arithmetic encoder is
characterized by four functions, Code MPS, Code LPS,
RENORME, and BYTEOUT [2]. These functions are
executed based on the context state of the arithmetic
encoder, its interval width (A), and codeword value (C).
The encoder must decide if a Most Probable Symbol
(MPS) or Least Probable Symbol (LPS) is encoded,
whether to renormalize (RENORME) the interval width
and codeword, and determine if a compressed byte needs
to be sent to the bitstream (BYTEOUT). Adding to the
complexity of the arithmetic encoder, the BYTEOUT
procedure is embedded within the RENORME procedure,
which in turn, is embedded in both the Code LPS and
Code MPS procedures.

The following sections discuss several
optimization steps which enable a fast software
implementation of the arithmetic encoder. Section 2
describes the principles of software pipelining and how it
applies to this implementation. Section 3 describes
decoupling coefficient bit modeling (CBM) and
arithmetic encoding. Section 4 describes the elimination
of the inner while loop associated with renormalization.
Section 5 discusses how to separate the BYTEOUT
procedure from encoding. Section 6 discusses how to
software pipeline the arithmetic encoder for the C64x
DSP. Section 7 compares the execution speed of the
optimized encoder with the straightforward
implementation.

2. SOFTWARE PIPELINING

To obtain a fast implementation, the arithmetic encoder
has to be efficiently software pipelined. Software
pipelining is a scheduling technique that allows the
parallel execution of multiple iterations of a loop [8,9].
This leverages the parallel architecture of VLIWs. The
idea is to start executing a subsequent iteration of a loop
before the previous one has completed. By finding the
minimum initiation interval, the number of cycles that
must execute between successive iterations, performance

V - 1170-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

L1 S1 M1 D1 D2 M2 S2 L2

Functional Units
A side

Functional Units
B side

Register File
A0 – A31

Register File
B0 – B31

Instruction Fetch

Instruction Dispatch

Instruction Decode

Control
Registers

Emulation

Interru
pt

C
ontrol

Data Path 1 Data Path 2

Figure 1: C64x VLIW-based DSP Architecture

can be maximized. An efficient pipelined schedule
however, is prevented by the overall structure of the
coefficient bit modeler, which contains nested loops,
nested conditional execution paths, and long dependency
paths. The optimizations described in the following
sections eliminate these obstacles by restructuring the
algorithm.

3. DECOUPLING THE COEFFICIENT BIT
MODELER FROM THE ARITHMETIC ENCODER

In a straightforward implementation, the coefficient bit
modeler would generate a single decision bit (D) and
context number (CX) that are then passed to the
arithmetic encoder. The arithmetic encoder would process
one CX/D pair at a time. However, JPEG2000 does not
require coupling of the coefficient bit modeler and
arithmetic encoder [6]. To bring the arithmetic encoder
into an efficient loop form, bit modeling and arithmetic
encoding are decoupled. CX/D pairs are queued up in a
buffer as they are generated, and later sent to the
arithmetic encoder for processing. This allows the
arithmetic encoder to operate on multiple CX/D pairs at
once, which reduces the function call overhead, and
opens up the possibility of software pipelining the loop in
a later optimization step.

4. ELIMINATING THE RENORME WHILE LOOP

To qualify the arithmetic encoder for pipelining, inner
loops have to be eliminated. The arithmetic encoder
contains a renormalization (RENORME) while loop
which is used to keep the interval width A above 0x8000.
In the loop, the value of A is left-shifted by one and tested
to see if (A < 0x8000) during each iteration. Figure 2
shows a reproduction of the RENORME flowchart found
in Annex C of the JPEG2000 Standard [2]. If the
processor implements an instruction that can determine
the number of left-most zeros present in A, this while
loop can be eliminated. Renormalization can then be
realized by perfoming the appropriate number of bit-shifts

RENORME

A = A << 1
C = C << 1
CT = CT- 1

CT = 0?

CALL BYTEOUT

(A & 0x8000) = 0?

Done

True

False

False

True

Figure 2: RENORME Procedure

in a single operation. In the hardware based arithmetic
encoder proposed in [5], a “leading zero detecter” was
created to determine the amount of left-most zeros in the
A register. In our implementation, the C64x instruction
LMBD is used [7]. Tests are included to prevent
overshifting of A and C in the event that a byte from
codeword C needs to be written to the bitstream. Figure 3
shows the new structure of RENORME.

5. DECOUPLING ENCODING AND BYTEOUT

It can be observed that the BYTEOUT procedure is
executed at a much lower rate than actual symbol
encoding. Only after a certain number of bits have been
encoded will the BYTEOUT procedure append encoded
bits to the bitstream. In our tests, it was found that the
number of times BYTEOUT needed to be called was on
average 5% of the total number of symbols encoded.
Therefore, further optimization should be targeted at
encoding rather than the BYTEOUT function. This is
made possible by removing BYTEOUT from the
encoding procedure and merging it with renormalization
into a separate loop. These two loops are created in a way
such that renormalization is performed in both. The first
of the two loops will encode a binary decision based on
the Code LPS and Code MPS procedures.
Renormalization will occur if necessary. This loop will be
refered to as the “encoding loop”. If a BYTEOUT needs
to occur, the encoding loop is exited. The second loop,
which will be referred to as the “output loop”, is entered
to perform a BYTEOUT and complete renormalization
(RENORME). The RENORME in the output loop will
execute any left-shifts of A and C that were not completed
prior to calling BYTEOUT. The encoding loop can now
be iterated as often as possible until it is detected that a

V - 118

➡ ➡

L_Shift = LMBD(1, A) - 16
L_Shift = MIN2(L_Shift, CT)

CT = CT - L_Shift
A = A << L_Shift
C = C << L_Shift

RENORME

Done

Figure 3: Modified RENORME

byte has to be output. The encoding loop is then
terminated and the output loop is entered. After that,
encoding resumes.

Removing the operations for BYTEOUT from
the encoding procedure has the additional benefit of
making the encoding loop more efficient. Cycle penalties
for exiting the encoding loop to enter the output loop are
negligible, since this occurs very infrequently. Figure 3
shows the modified RENORME function. The test (CT
== 0?) from Figure 2 now becomes an exit condition for
the encoding loop instead of a test embedded in
RENORME.

6. ENCODING LOOP OPTIMIZATION

Software pipelining of the encoding loop will allow for
the loads of CX/D pairs, lookup table values, and context
states for subsequent iterations to occur in parallel with
encoding operations. This will reduce the number of
cycles needed to encode a single CX/D pair because the
latencies associated with loads from memory can be
hidden within encoder computations.

Since computations on the arithmetic encoder
interval width A and codeword C for a future iteration
cannot occur until the current iteration has completed its
update of A and C, a limit is placed on the minimum
initiation interval that can be achieved in a pipelined
loop. The remaining optimization steps shorten existing
recurrence paths as to allow for a small initiation interval
and thus, a more efficient software pipelined schedule.

6.1. Exploiting Parallelism Across Conditional
Execution Paths

The arithmetic encoder contains many nested conditional
statements that limit parallelism. Algorithm restructuring
was performed to minimize the number of different
conditional execution paths and introduce more
parallelism. This was achieved by determining which
instructions could be executed speculatively, and
minimizing the number of predication flags [9] and
conditional expressions required. In this regard, several

observations were made that allowed for simplification of
the control flow.

All conditions that direct the code flow are
computed at the beginning and then used to predicate the
encoding operations [9]. The majority of the code flow is
directed by conditions which are based on whether a LPS
or MPS is coded, and the value of A with respect to Qe
and the constant 0x8000. Some of these conditions can be
computed in parallel. The two computations of the
arithmetic encoder, (A = Qe) and (C = C + Qe), are
common to Code MPS and Code LPS.

The C64x provides predicate registers which will
enable the conditional execution of operations based on
the Boolean value of associated conditions [7]. Using
predicated execution effectively collapses the Code MPS
and Code LPS procedures into a single process,
shortening the recurrence path and thus, allowing for
more efficient software pipelining of the encoding loop.

6.2. Optimized Data Packing

An optimum storage format in memory was devised for
the context state data which minimizes the number of
operations required to load, store, and extract the
individual elements. The probability look-up table index
and MPS switch values are packed into one byte. To also
make context state updates more efficient, the probability
look-up table is structured in such a way that an updated
MPS switch can be easily packed into the registers
containing the next index (NMPS/NLPS).

6.3. Eliminating Memory Dependencies

In the special case that a context number CX from
iteration i is equal to the CX from iteration (i-1), and the
CX state was updated in iteration (i-1), a memory
dependency will exist. This is because iteration i must use
the CX state updated in iteration (i-1). This memory
dependency is eliminated by obtaining the updated state
data for the next iteration directly from the register it was
written to in the previous iteration, rather than from
memory. This effectively replaces the load operation (and
all associated delay slots) in the recurrence path with a
simple register move operation. Note that there is no
dependency if the CX from iteration i is different from
the CX of iteration (i-1). In this case, the context state for
the next iteration can be read before the context state of
the previous iteration is updated in memory.

6.4. Software Pipelined Encoder Loop

Figure 4 is a graphical representation of the loop pipeline
that shows how iterations overlap. The software pipelined

V - 119

➡ ➡

Iteration 1
Load Input Data

Compute Conditions

Encode

Load Input Data

Compute Conditions

Encode
Compute Conditions

Encode

Load Input Data

Iteration 2

Iteration 3

Iteration Overlap

Figure 4: Encoding Loop Pipeline

encoder loop will encode a CX/D pair with loads for
subsequent CX/D pairs, context states, and probabilities
occurring in parallel. In the event that a BYTEOUT
becomes necessary, an early exit of the encoding loop is
forced and the output loop (containing BYTEOUT and
RENORME) is entered. The pipelined loop contains
instructions to preserve live-out variables in the event that
the encoding loop is exited. This will allow for the
reversal of any loads, stores, and computations for future
iterations that should not have occurred. In the event that
a byte needs to be written to the bitstream, the output loop
is entered. If there are still remaining CX/D pairs to be
encoded after a BYTEOUT, the encoding loop is re-
entered.

7. ARITHMETIC ENCODER PERFORMANCE

A straightforward implementation of the arithmetic
encoder as defined in Annex C of the JPEG2000
Standard text [2], and our optimized version, were
benchmarked on the TMS320C6416 DSP. The software
pipelined encoding loop operates at a rate of 13 cycles per
context/decision pair. The number of cycles spent on the
output loop and pipeline re-initialization is approximately
71. Since about 95% of the processing occurs in the
encoding loop, the 71 cycles spent outside of the
pipelined kernel has a minimal effect on overall
performance. Our results show an average 2.4x speed-up
when comparing our optimized kernel to the
straightforward implementation. The tests were
performed on several photographic images using a
JPEG2000 encoder with a 9/7 lifting-based irreversible
wavelet filter, and YUV 4:4:4 color input images. The
arithmetic encoder was called once per coding pass
(significance, refinement, cleanup), and terminated after
encoding one codeblock. Results are shown in Table 1.

8. CONCLUSION

Techniques for software pipelining the JPEG2000 binary
arithmetic encoder were discussed. The arithmetic
encoder was implemented on a C64x DSP to show the

Image
512x512

Original
(Cycles)

Optimized
(Cycles)

Com-
pression

Speed
-up

Lena 35,129,408 14,538,352 15.1 2.4x
Peppers 44,042,024 18,216,192 12.6 2.4x
Baboon 92,802,832 38,775,032 4.6 2.4x

Table 1. Arithmetic Encoder Comparison

benefits of the described optimizations. A performance
boost of 2.4x over a straightforward implementation was
shown. Some of the described optimization techniques
may also be applied to the JPEG2000 binary arithmetic
decoder and to some extent, other arithmetic coders such
as those used in H.264.

9. REFERENCES

[1] K. Andra, C. Chakrabarti, and T. Acharya, “A High-
Performance JPEG2000 Architecture,” IEEE Trans. on Circuits
and Systems for Video Technology, vol 13, No. 3, pp. 209-218,
March 2003.

[2] ISO/IEC 15444-1:2000, “Information technology - JPEG
2000 image coding system - Part 1: Core coding system”, July
31, 2002

[3] C. Christopoulos, A. Skodras and T. Ebrahimi, “The
JPEG2000 Still Image Coding System: An Overview,” IEEE
Trans. on Consumer Electronics, vol 46, No. 4, pp. 1103-1127,
Nov 2000.

[4] C. Lian, K. Chen, H. Chen, and L. Chen, “Analysis and
Architecture Design of Block-Coding Engine for EBCOT in
JPEG 2000,” IEEE Trans. on Circuits and Systems for Video
Technology, vol 13, No. 3, pp. 219-230, March 2003.

[5] K. Ong, W. Chang, Y. Tseng, Y. Lee, and C. Lee, “A High
Throughput Context-based Adaptive Arithmetic Codec for
JPEG2000,” IEEE International Symposium on Circuits and
Systems, vol 4, pp. 133-136, May 2002.

[6] D.S. Taubman and M.W. Marcellin, JPEG2000 Image
Compression Fundamentals, Standards and Practice, Kluwer
Academic Publishers, Boston, 2002.

[7] Texas Instruments, TMS320C6000 CPU and Instruction Set
Reference Guide, SPRU 189, Oct 2000.

[8] Texas Instruments, TMS320C6000 Programmer’s Guide,
SPRU 198, Aug 2002.

[9] N.J. Warter, D.M. Lavery, and W.W. Hwu, “The Benefit of
Predicated Execution for Software Pipelining,” Proceeding of
the Twenty-Sixth Hawaii International Conference on System
Sciences, vol 1, pp. 497-506, Jan 1993.

V - 120

➡ ➠

