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ABSTRACT

In this paper we outline the main design features of a low
complexity speech recognition engine targeted for mobile
devices. Although major parts have already been
presented, new features and important refinements of the
original ideas, which were omitted, are now described.
We also show how these techniques can be successfully
combined in order to achieve various design targets with
minimized impact on the recognition performance.

1. INTRODUCTION 

During the recent years the field of automatic speech 
recognition (ASR) has witnessed an intense activity in the
area of complexity reduction. The main target of such
research is of making possible increasingly more complex
recognition tasks using only the limited capabilities of
portable devices. Even though the hardware capabilities of 
such mobile devices are on a constant increase, the 
importance of low complexity systems will continue to
remain very high. A main driver for this is the need of
increasing the battery time by minimizing the energy
consumption of the underlying algorithms.

With this paper we aim to illustrate a few key
complexity reduction techniques and their influence in the
design process for a practical speech recognition engine. 
The paper is organized as follows: in the next three
sections we briefly review the main blocks of a speech 
recognition engine, namely: acoustic modeling, decoding
and speaker adaptation. For each of these sections low 
complexity design paradigms are described. In the
experimental section, with the aim of selecting effective 
design targets for a practical system, we present how these 
techniques are evaluated and can be combined. Finally, 
two design alternatives are isolated and conclusions are 
drawn.

2. ACOUSTIC MODELING 

Hidden Markov Models (HMM) are a very successful tool 
in ASR and among them the continuous density HMMs
are the most widely used. In addition to their good 
modeling capacity they have proved to be highly robust
regarding the parameter values and, as consequence, 
highly compressible. Various compression options have 
been applied, the vast majority being focused on 
quantization procedures for the mean and variance vectors
of state densities [6].

As previously presented in [1], joint scalar
quantization is a very effective and, possibly, one of the
simplest methods. Similarly to the alternative approaches,
it is capable of achieving both a reduced memory
representation as well as a reduced computational cost. 

3. DECODING 

3.1. State emission likelihoods

The decoder complexity is heavily influenced by the cost
of computing state emission likelihoods (which we will
refer shortly as B-probs). This part can consume more
than 60% of the total recognition costs even with the
efficient approach allowed by qHMMs. For mixture of
Gaussians likelihoods the most expensive part consists on
the evaluation of the Mahalanobis distance for each
density. For a single component the formula reduces to:
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all dimensions of the observation vector (the feature
space) gives the required distance value for the density k.
With a quantized representation for means and variances 
it is readily apparent that given the observation vector the
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mean and variance quantizer levels. With low rate
quantization this results in a small set which makes pre-
computing these values advantageous. By storing them
into tables, one for each feature vector dimension, the 

values are obtained by indexing with the joint mean

and variance quantizers index. This reduces B-prob
computation to table indexing and summations. In [1]
estimates are given of the number of floating point
operations required by the original and by the indexed
approach. It is shown that, for a certain critical level of
densities, it is more effective to use the helper tables.
Since, in practical systems, the arithmetic operations alone
are not uniquely responsible of processor cycles both
methods need to be evaluated in order to determine the
fastest approach. 

kid

If in formula (1) the observation vectors are also 
quantized, the computation of the helper tables at each 
frame can be completely avoided, provided that the
product quantization levels are manageable in terms of the
required storage. Since, usually, the quantization rate of 
the mean parameters is low, is it not required to use a high
accuracy representation of the observation vectors 
because the induced error is already determined by the 
precision of the mean parameter storage. A comparable
quantization rate or even identical quantizers can be 
considered.

3.2. The Viterbi algorithm

Once B-probs have been obtained the computation of the
best alignment of the HMM states to the input sequence of
feature vectors is done using the Vitebi algorithm. A 
token passing approach [7] is used. For a phoneme based 
isolated word recognition task, as for instance name
dialing, it is advantageous to minimize the Viterbi token
passing structure with the help of prefix sharing. By this, a 
tree structured recognition grammar is established. It is
known [8] that optimal structures can be derived in terms
of the total number of phonemes required. However, since
usually the optimal structures are less regular and much
more expensive to construct dynamically, the tree
provides a good trade-off between compactness and
representation regularity. Its major advantages are that it
requires minimal additional resources to keep its structure
(as low as one bit per phoneme instance), offers the
possibility of memory localized decoding and hence good 
processor cache utilization and, not the least, in 
comparison with a linear grammar organization, it has
better efficiency when a beam search Viterbi is used.

4. SPEAKER ADAPTATION 

For maximizing the recognition performance speaker 
adaptation is a mandatory procedure.  Among the

available alternatives, Bayesian adaptation was chosen 
due to good performance, simplicity and minimal
complexity overhead. A more in-depth description of the
adaptation algorithm and its performance is given in [3].
In the following we focus only on the complexity aspects. 
Two complexity reduction methods are described next.

4.1. Single utterance adaptation

The simple means adaptation formula
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requires the computation and storage of a set of 
accumulator parameters (for the sums in (2)). Once 
enough adaptation utterances are observed this set is used 
to compute the replacement for the original parameters.
However, doing this will also substantially increase the
memory requirement for acoustic model storage. In a 
supervised framework it was observed that adaptation
after each utterance produces good results. Therefore, 
with careful programming of (2), the memory
requirements for accumulators are reduced to the
equivalent required for adapting a single Gaussian
density. Furthermore, no long-term storage of the
accumulators is needed. 

4.2. Quantization of the features 

Following 4.1 the major memory requirement is imposed
by the storage of the feature vectors for the most recent 
utterance. To minimize this cost feature vector 
quantization can be used. Since the HMM parameters are
already heavily quantized, it is to be expected that the
quantization of the feature vectors with a higher or 
comparable rate will not significantly influence the
adaptation performance. In this respect, the existing scalar 
quantizers for the mean parameters of qHMMs can 
provide a simple and efficient solution.

5. EXPERIMENTS

The evaluation was carried out using a multi-lingual,
speaker independent, name recognition task. Feature
extraction was performed using FFT derived Mel cepstral
coefficients. The 1st and 2nd order time derivatives were 
included which resulted in 39 dimensional feature vectors.
For noise robustness a normalization scheme [5] was
enabled as the final front-end stage. The three state
phoneme models had a left-to-right structure with no
skips.  ML training was performed on a diverse set of 
languages. Although the system was trained to
simultaneously handle a large language set, we are
presenting here results for only two out of the 27
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languages covered. The selected languages are German
and English. The recognition grammar consisted of names
composed of one or several parts. Slightly more than 100
name entries were active for each language and a total of
11000 utterances were selected for testing. Two testing
environments were used; “clean” which contains the 
original waveform recordings and “noise” which was 
created by mixing various noise types with SNR ranges 
from 5 to 20 dB.

In the first set of experiments, using the original set of 
models, we evaluated the effect of switching the engine
from floating point mode (“float”) into fix point mode
(“fxp”). Typically, 16 bit integer representations were 
used. Both the speaker-independent (“SI”) and the
speaker-adapted (“SA”) rates are presented below. 

SI fxp SI float SA fxp SA float
Clean 95.05 95.14 98.02 97.97
Noise 84.83 85.09 92.40 93.07

Table 1 Fixed point vs. floating point performance 

The negative impact is most visible in the more
challenging “noise” environment. Since floating point
computation is prohibitively expensive in an embedded
environment both because of memory as well as 
computational complexity (e.g. emulation may be
required) this design step and performance impact are
unavoidable.

In the following step we focused on the problem of 
HMM quantization.  A large range of quantization rates
for means and variances was evaluated, as illustrated in
Table 2 and Table 3. The quantization rate for means is 
placed at the start of each line and the rates for variances
are on top of the columns. All the quantizers were non-
linear, Lloyd-Max trained on the parameters of the
original models.

Clean SI
m \ v 0 1 2 3 4

1 51.00 72.49 77.48 n/a n/a
2 91.51 93.00 93.74 93.84 n/a
3 92.75 94.40 95.03 95.14 n/a
4 92.91 94.51 95.01 94.93 94.94
5 93.08 94.56 95.08 95.01 95.05
6 92.99 94.45 95.14 94.99 94.95
7 93.03 94.48 95.11 94.79 94.87

Noise SI
m \ v 0 1 2 3 4

1 22.39 38.01 39.88 n/a n/a
2 81.01 82.97 83.37 83.71 n/a
3 82.03 83.77 84.23 84.58 n/a
4 82.34 84.10 84.46 84.65 84.82
5 82.52 84.30 84.50 84.76 84.65
6 82.59 84.33 84.53 84.80 84.80
7 82.48 84.50 84.44 84.79 84.76

Table 2 Recognition rates with HMM quantization

Clean SA
m \ v 0 1 2 3 4

1 56.60 76.20 81.78 n/a n/a
2 95.63 96.37 96.52 96.36 n/a
3 97.05 97.51 97.77 97.66 n/a
4 97.37 97.79 97.97 97.95 98.05
5 97.45 97.86 98.17 97.97 98.01
6 97.53 97.92 98.03 97.96 98.06
7 97.54 97.82 98.04 97.97 97.98

Noise SA
m \ v 0 1 2 3 4

1 24.15 39.26 41.27 n/a n/a
2 87.13 88.00 88.07 87.93 n/a
3 90.24 90.86 91.34 91.30 n/a
4 91.08 92.23 92.71 92.43 92.36
5 91.11 92.40 92.50 92.82 92.56
6 90.81 92.10 92.72 92.70 92.48
7 90.61 92.16 92.80 92.62 92.51

Table 3 Recognition rates with HMM quantization and 
speaker adaptation 

From Table 2 and Table 3 we observe that for higher
rates the performance saturates close to the value of the
original models. Due to practical considerations (an even 
packing of mean-variance pairs into bytes) 5m3v and
3m1v are the most interesting design points. If pressed by
hard complexity limits, even extreme quantization rates 
such as a 2-bit rate for the means with a global variance,
can be considered. 

Although the required storage for the quantizers is
small (e.g. only 40 values for a 5-bit + 3-bit pair) we also
investigated the performance of optimal linear quantizers.
In comparison with the non-linear ones, they had similar
performance except for the lower rates where a higher
degradation was noticeable. Only the “Clean SI” results 
are shown in Table 4.1

Clean  SI
m \ v 0 1 2 3 4

1 51.00 72.49 73.59 n/a n/a
2 90.46 92.52 93.34 93.53 n/a
3 92.44 94.03 94.38 94.32 n/a
4 92.79 94.45 94.72 94.92 94.69
5 93.04 94.59 95.00 95.14 95.18
6 93.10 94.57 95.05 94.93 94.90
7 93.10 94.52 94.96 95.08 94.94

Table 4 Recognition rates with uniform HMM quantization

As presented in section 3.1 it is very attractive to avoid
computing the B-prob helper tables at each frame. In
order to do this we are quantizing the features only for the

1 This is due to lack of space and a similar observed 
behavior also in the other three testing cases. 

V - 115

➡ ➡



purpose of an optimized B-prob computation. The results
of these experiments are visible in the “SI” and “SA” 
columns of Table 5. The naming convention encodes the
quantization rates for means, variances and features (i.e. 
“3m1v4f” states rate 3 for mean, 1 for variances and 4 for 
the feature components). For reference, the original
models “orig” and quantized models with accurate B-prob 
computation are also included (i.e. the table entries which
are not ending in “f”). 

Based on these results this method has negligible
impact on the recognition performance. Surprisingly, in a 
few cases even better performance is measured.

Clean SI SA qSA
3m1v3f 94.14 97.52 97.48
3m1v4f 94.52 97.70 97.55
3m1v 94.40 97.51 97.58
5m3v3f 94.35 97.74 97.87
5m3v4f 95.02 97.97 97.95
5m3v5f 95.09 97.91 98.00
5m3v 95.01 97.97 97.99
orig 95.05 98.02 97.96

Noise SI SA qSA
3m1v3f 83.98 91.15 91.20
3m1v4f 83.90 90.83 90.76
3m1v 83.77 90.86 90.69
5m3v3f 84.34 92.41 92.51
5m3v4f 84.66 92.76 92.78
5m3v5f 84.71 92.80 92.60
5m3v 84.76 92.82 92.69
orig 84.83 92.40 92.25

Table 5 Results of feature quantization for B-prob
computation and adaptation 

As discussed in Section 4.2, storing quantized features
can substantially reduce the memory requirements for 
adaptation. The impact on the adaptation performance is 
visible in the “qSA” column of Table 5 where a 4-bit 
quantizer is used in all cases. This quantizer is identical to
the one used in the B-prob acceleration for “3m1v4f” and
“5m3v4f”. A minimal effect is observed for all cases. 

Finally, following the ideas in [4] we tested the
influence of halving the frame frequency of the B-prob
computations. We have used the two most interesting
design targets.

 SI SI/2 qSA qSA/2
3m1v4f 94.52 94.38 97.55 97.51
5m3v4f 95.02 94.87 97.95 97.82
3m1v4f 83.90 83.47 90.76 90.34
5m3v4f 84.66 84.25 92.78 92.04

Clean

Noise

Table 6 Results with computation of B-probs every 2nd frame 

As shown in Table 6 in columns “SI/2” and “qSI/2”, 
for both cases the impact is only marginal in comparison

to the reference rates in columns “SI” and “qSA”. 
Nevertheless, the complexity reduction is substantial.

Finally, after all these steps, we can conclude that in
practice, for this design example, “5m3v4f” provides a 
good solution, with substantial complexity reductions,
when high performance is desired. For stronger
complexity constrains, “3m1v4f” gives a very good 
compromise.

6. CONCLUSION 

In this paper we addressed several topics related with the
practical design of low complexity speech recognition 
engines. The structure of such engines allows a large 
degree of freedom in choosing the target operating points.
Several low complexity techniques were presented and 
evaluated. In the context of a speaker independent name-
dialing task we have shown that these techniques can be 
successfully combined in order to achieve various design
targets with minimized impact on the recognition
performance.
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