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ABSTRACT 

To meet the real time requirements an interpolation free, parallel 

algorithm for the Fast Radon Transform (FRT) and Inverse FRT 

(IFRT) is proposed. The proposed method solves all the important 

problems associated with the previous interpolation free FRT and 

IFRT algorithm and reduces the number of computations and 

algorithmic complexities significantly. The proposed algorithm is 

highly regular and we also describe a methodology to design a 

dedicated parallel processing architecture from the view point of its 

efficient implementation. 

                         I. INTRODUCTION 

The Radon Transform of an image is a set of projection of the 

image taken at different angles [1].  By means of the Radon 

transform one can determine a system internal structure without 

physically probing the interior.  For this reason Radon transform 

has been adopted in widespread applications such as 

tomography, ultrasound, x-ray, nuclear magnetic resonance 

imaging, optics, stress analysis, geophysics and many others.  In 

these applications, DRT of the object can be easily obtained by 

the projections of x-ray, ultrasound or similar projecting sources 

[1] [2].  The Inverse DRT to retrieve the original image, faces a 

lot of problems in realization.  One popular inversion method is 

the ‘Filtered back projection algorithm’ [1].  The various 

difficulties associated with this algorithm are, first, the 

conversion between radial coordinates and a raster scan format, 

second, the interpolation required to compute the line integral 

approximations on a rectangular grid, and finally, the significant 

computational requirements are necessary to calculate the 

inverse, however its VLSI implementation was also tried [3].  To 

solve these difficulties Beylkin’s proposed a distinctly different 

approach for the DRT in -p domain [4].  Based on this 

approach, Kelley and Madisetti further proposed an improved 

Fast Radon Transform (FRT) and the Inverse Fast Radon 

Transform (IFRT) algorithm [5].  However, this algorithm  

suffers from large number of computations because of zero 

padding, and also very complex because of its three different 

flows of computations which is not suitable for implementation 

in hardware [6].  Another interpolation free algorithm was 

proposed by Lun in 1995 [7]. Although that was a multiplication 

free algorithm but it does not facilitate parallel processing and 

requires a large number of additions and also consists of a dense 

projections near 00  and 900 whereas a less number of projections 

near 450.  In this paper, a new method for the FRT and IFRT is 

proposed based on the Kelley-Madisetti algorithm. The proposed 

method successfully overcomes these problems resulting in a 

much reduction in number of computation followed by a simple 

algorithm and therefore acts as a basis for a compact 

implementation in hardware to meet the real time requirements.  

Section II introduces the proposed algorithm and a methodology 

to design a fast hardware architecture of the proposed algorithm. 

In section III an example has been presented and an analysis to 

prove the efficiency of the proposed method.  Section IV 

concludes the paper. 

II. PROPOSED METHOD 

Let u(t,x) be a 2-d image (ref. to fig.1), then its continuous 

Radon-Transform (R-T) is given by [1]: 

dtdx)pxt()x,t(u)}x,t(u{R         ……..(i) 

R-T of an image is the integral of the image intensities along 

different possible straight lines defined by the parameters  and p 

through the image (fig.1). Corresponding Radon space is 

constructed with two parameters   and p. 

The number of computations reduces significantly when this 

space domain computation is computed in the frequency domain.  

Let t =t- , one can rewrite eqn.(i) follows: 

                                  

In equation (ii) unit impulse function is replaced by two-

dimensional line impulse function (fig.2): 

                           if (n-m)2=0

                         0  if (n-m)2 0  and 

1dm)mn(,1dn)mn(    for n, m    (iii) 

 is the set of real numbers. Impulse function in (ii) performs 

only the rotation operation while the input image is translated. 

Discrete Radon Transform: 

Assume that u(t,x) is of finite support. Let y(n,s) represents the 

discrete approximation to R{u(t,x)}, and let x(m,l) represents the 

discrete version of u(t,x). One can approximate (ii) as follows[5]: 

tddx)px,t(x,tu

…..(ii)
Fig.1 An Image with a st. line 

Fig.2 Line function for the angle 8.05o

tddx)pxt()x,t(u)}x,t(u{R
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In frequency domain, Discrete Radon transform is given by: 

                R{x(m,l)}=F-1{XL(k) LS(k)}……(v)

Where, x(m,l) is the causal input image sequence in a shifted 

coordinate system defined as x(m,l)=x (m-2M , l-L ), this 

coordinate axis shift is useful for the equivalent frequency 

domain computation of the Radon transform [5], XL(k) is the

column wise Discrete Fourier Transform (DFT) of x(m,l) and 

LS(k) is the DFT of the line  function (shown in the fig.2) 

w.r.t. ‘m’ and is given in eqn.(vii). This line  function is used to 

pick up the pixel intensities along different possible straight lines  

through  the  image.  XL(k)  is  a  row  vector  of support  [0:L-1] 

and with the l’th element equal to x(m,l), LS(k) is a matrix of 

support [0:S-1, 0:L-1] and S stands for the slope. 

Inverse R-T is given by: 

                                      x(m,l)=F-1{WS(k) SL(k) ………(vi) 

where, WS(k) is the filtered Radon transform corresponds to  

every row of the Radon transform passing through a filter of 

frequency response | | and SL(k) is given in eqn. (viii). 

LS(k) and SL(k) are given by: 
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where, N=length of  columns of the image after zero padding, 

L=length of the rows without zero padding, 

l=0,1,2,……L-1, grid points along the row. 

S=total number of scanning slopes. 

g(s) determines the slopes of the line  function for 

s=0,1,2,……S-1, 

for linear slope sampling: 

1S

1Ss2
Bsg   …….     ……     ……… (ix) 

h (s) = 1…….        ………    ……   ... ……(x) 

for linear angular sampling: 

])Barctan[
1S

1Ss2
tan(sg ,          …..(xi) 

])Barctan[
1S

1Ss2
(secsh 2 ,       .....(xii) 

Although this frequency domain technique is very efficient, there 

are two important periodicity constraints, imposed by Discrete 

Fourier Transform which are: 

(i) line  function aliasing for the slope, s>r as shown in the fig.3 

and (ii) approximation of linear convolutions by circular 

(periodic) convolutions is not valid for the slope, s>r, where, 

image aspect ratio, r=length of the image /width of the image. 

Another important problem is poor dispersion characteristics of 

the line  function for higher slope. For a square image, r=1, 

hence slope of the line  function is also limited to, s 1 (i.e. 

max( )=45o).

Kelley-Madisetti [5] solved these problems by padding zeros 

along the length of a square image to increase the aspect ratio, r 

of the image and using a new line  function (known as DKMD 

formula) for the slope, s>1, which shows superior dispersion 

characteristic for higher slope. Disadvantage of this technique 

are that the number of computations which increases greatly 

because of zero padding and depending on the slope value there 

are three different flows of computations, which increases the 

computation complexity of this algorithm. 

To overcome the problem of the original technique to 

transform the image features which are above 45o a square 

image space is virtually divided into two parts (fig.4) (i) 

image space below 45o (nonshaded part) and (ii) image 

space above 45o (shaded part). Now for the image features 

below 45o, X and Y axes remain unchanged, but for the 

image features above 45o, the coordinate axes have been 

inverted. Then clearly the features which were initially above 

45o (w.r.t. X axes) are now within 45o. The Fast Radon 

Transform (FRT) and Inverse Fast 

Radon Transform (IFRT) of these two 

parts are done separately. For the IFRT, 

all the image features below 45o are 

developed with unchanged coordinate 

axes and referred as column wise 

operation where as all the image 

features above 45o are developed with 

inverted coordinate axes which is 

referred as row wise operation, then 

two IFRT’s are added to develop the 

complete image. Hence to cover all the features of a square 

image there is no need to go for the slope, s> 45o. In this 

way it avoids zero padding and requirement of any new line 

function. It results a highly regular algorithm with a 

significant reduction in number of computations and is given 

by a flow diagram in the fig.5. The symmetry between the 

forward and inverse algorithm in fig.5 are readily apparent. 

The proposed IFRT represents a theoretically sound method 

of inversion which avoids the need for data interpolation, and 

requires no classical back-projection operation and it is 

computationally as efficient as the forward FRT.  

….(iv)

LS(k)

0<B<

0<B<

Fig.3  Line function for angle 60.95o showing aliasing.

……(vii)

……(viii)

  for(N/2-d+1) k N-1     

 for 0 k N/2-d

X

Y

Fig.4   A  square  

image space divided

into two parts. 

 ,      for 0  k  N/2-d

V - 106

➡ ➡



.

As shown in fig.5 the main computational steps are 1-D FFTs, 

Vector-Matrix multiplication and 1-D IFFTs which are discussed 

below:

(i) FFT computation

Using decimation in time algorithm, the basic operation of a M 

point FFT is:           a =a+be-j(2 k/M)

b =a-be-j(2 k/M) 

Where a , b , a, b are complex numbers. FFT computation may 

be done using butterfly structure using CORDIC as a basic 

processing element (fig.6) [8]: 

Assuming our image to be processed is of size 256 256. As a 

realistic approach if p number of processing elements (PE) are 

used (p<256), total image is to be divided into p number of 

discrete memory banks, called Local Memory (LM) each 

containing 256/p number of columns. By accessing its LM, each 

PE computes 1-d FFT. Results may also be stored in the LM. 

Each LM comprises of two independent memory banks for 

storing real and imaginary parts of the data. 

(ii) Vector-Matrix (V-M) multiplication

21
2221

1211
21 bb

iexp)iexp(

iexp)iexp(
aa

CORDIC based PE shown in fig.7b may be used for V-M 

multiplication and corresponding input to the PE will be (l,s,k). 

Since the exponentials of the forward and inverse transform 

matrices are known explicitly [eqn. (vii) and (viii)] transform 

coefficients ( ’s) can be generated in real time without storing 
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Fig.5  A  flow diagram of the proposed FRT and IFRT 

algorithm.

Fig.7a Proposed Hardware Architecture to realize 

vector-matrix multiplication. 

Fig.7b Processing element (PE) 

        A CORDIC unit 
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 it in a memory. During V-M computation PE’s may be  

connected in pipeline as shown in fig.7a. 

(iii) IFFT computation is done in a similar way as the FFT 

computation. 

After completion of column wise operation PE may start 

computation for the row wise data. The host processor has now 

time to read processed data from the column memories. The host 

can then further process (high level processing) those data. For 

an input image, processed data of the two operations (row wise 

and column wise) corresponding to a particular co ordinate (x, y) 

may be added to develop a complete image, host processor can 

also be used for this purpose. Same architecture can be used for 

FRT and IFRT computations. 

III. RESULT AND DISCUSSIONS 

To verify  our  algorithm,  an  example (using  MATLAB 

simulator) is shown in the fig. 8 with a 128 128 image, which 

illustrates the validity of the proposed algorithm. In the Kelly-

Madisetti algorithm [5], depending on the slope value s there are 

three different flows of computations with complexities: 

Number of computation=O(N3), when s 1.

Number of computation=O(N3logN), when 1<s r

Number of computation=O(N4), when s>r. 

where, N is the zero padded length of the image and N>>L 

(L=width of the image), r is the aspect ratio of the image. In the 

proposed technique being max(s)=1, there is only a single flow 

of computation with the number of computations equal to O(N3),

moreover N can be made equal to L without zero padding. 

Therefore a significant reduction in the number of computation  

is mainly because of using the most simple flow [O(N3)] of the 

original technique and reduction of N itself to its minimum value 

without zero padding. However, for better resolution, image 

columns (or rows) are zero padded to double of its original 

length. In order to suppress the high frequency noise associated 

with the Ram-Lak filter, Shepp-Logan filter [1] was used in this 

reconstruction example. From the discussions it becomes clear 

that the complexity of the proposed algorithm is also much less 

compared to its previous algorithm because it requires only one 

type of flow instead of three different types of flows, which 

makes it possible to propose an efficient VLSI parallel 

processing architecture to implement the algorithm. 

IV. CONCLUSION 

An Interpolation free, highly regular algorithm for the Fast 

Radon Transform [FRT] and Inverse Fast Radon Transform 

[IFRT] has been proposed. The computational complexities in 

the proposed method is much less compared to the existing 

technique results in a significant reduction in number of 

computations while preserving most of the important flexibilities 

of the original technique such as parallelism, ability to take any 

arbitrary set of projection angles etc. The high regularity and 

natural concurrency of the proposed algorithm makes it a 

suitable choice for VLSI implementation. Furthermore same 

architecture can be used for real time FRT and IFRT 

computations.
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        8a. Original Image. 8b. Complete Reconstructed 

     Image (fig.8d+fig.8f). 

8c. RT for the features 

            below  45o.

8d. IRT for the features 

           below 45o.

8e. RT for the features 

            above 45o.

8f. IRT for the features 

           above 45o.

Fig. 8 An example
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