
A REGULAR ALGORITHM FOR REAL TIME RADON & INVERSE RADON TRANSFORM

Abhishek Mitra and Swapna Banerjee

 E & ECE dept, IIT Kharagpur 721302, India e-mail: mitra_avi@indiatimes.com, swapna@ece.iitkgp.ernet.in

ABSTRACT

To meet the real time requirements an interpolation free, parallel

algorithm for the Fast Radon Transform (FRT) and Inverse FRT

(IFRT) is proposed. The proposed method solves all the important

problems associated with the previous interpolation free FRT and

IFRT algorithm and reduces the number of computations and

algorithmic complexities significantly. The proposed algorithm is

highly regular and we also describe a methodology to design a

dedicated parallel processing architecture from the view point of its

efficient implementation.

 I. INTRODUCTION

The Radon Transform of an image is a set of projection of the

image taken at different angles [1]. By means of the Radon

transform one can determine a system internal structure without

physically probing the interior. For this reason Radon transform

has been adopted in widespread applications such as

tomography, ultrasound, x-ray, nuclear magnetic resonance

imaging, optics, stress analysis, geophysics and many others. In

these applications, DRT of the object can be easily obtained by

the projections of x-ray, ultrasound or similar projecting sources

[1] [2]. The Inverse DRT to retrieve the original image, faces a

lot of problems in realization. One popular inversion method is

the ‘Filtered back projection algorithm’ [1]. The various

difficulties associated with this algorithm are, first, the

conversion between radial coordinates and a raster scan format,

second, the interpolation required to compute the line integral

approximations on a rectangular grid, and finally, the significant

computational requirements are necessary to calculate the

inverse, however its VLSI implementation was also tried [3]. To

solve these difficulties Beylkin’s proposed a distinctly different

approach for the DRT in -p domain [4]. Based on this

approach, Kelley and Madisetti further proposed an improved

Fast Radon Transform (FRT) and the Inverse Fast Radon

Transform (IFRT) algorithm [5]. However, this algorithm

suffers from large number of computations because of zero

padding, and also very complex because of its three different

flows of computations which is not suitable for implementation

in hardware [6]. Another interpolation free algorithm was

proposed by Lun in 1995 [7]. Although that was a multiplication

free algorithm but it does not facilitate parallel processing and

requires a large number of additions and also consists of a dense

projections near 00 and 900 whereas a less number of projections

near 450. In this paper, a new method for the FRT and IFRT is

proposed based on the Kelley-Madisetti algorithm. The proposed

method successfully overcomes these problems resulting in a

much reduction in number of computation followed by a simple

algorithm and therefore acts as a basis for a compact

implementation in hardware to meet the real time requirements.

Section II introduces the proposed algorithm and a methodology

to design a fast hardware architecture of the proposed algorithm.

In section III an example has been presented and an analysis to

prove the efficiency of the proposed method. Section IV

concludes the paper.

II. PROPOSED METHOD

Let u(t,x) be a 2-d image (ref. to fig.1), then its continuous

Radon-Transform (R-T) is given by [1]:

dtdx)pxt()x,t(u)}x,t(u{R ……..(i)

R-T of an image is the integral of the image intensities along

different possible straight lines defined by the parameters and p

through the image (fig.1). Corresponding Radon space is

constructed with two parameters and p.

The number of computations reduces significantly when this

space domain computation is computed in the frequency domain.

Let t =t- , one can rewrite eqn.(i) follows:

In equation (ii) unit impulse function is replaced by two-

dimensional line impulse function (fig.2):

 if (n-m)2=0

 0 if (n-m)2 0 and

1dm)mn(,1dn)mn(for n, m (iii)

 is the set of real numbers. Impulse function in (ii) performs

only the rotation operation while the input image is translated.

Discrete Radon Transform:

Assume that u(t,x) is of finite support. Let y(n,s) represents the

discrete approximation to R{u(t,x)}, and let x(m,l) represents the

discrete version of u(t,x). One can approximate (ii) as follows[5]:

tddx)px,t(x,tu

…..(ii)
Fig.1 An Image with a st. line

Fig.2 Line function for the angle 8.05o

tddx)pxt()x,t(u)}x,t(u{R

(n,m) =

V - 1050-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

'm 'l

)'s,'m()','n'm('x)s,'n(y

'L

'L'l

'M

'M'm

)'s,'m()','n'm('x

where,
2

1N
to

2

1N
n , and …N = 2M + 1

In frequency domain, Discrete Radon transform is given by:

 R{x(m,l)}=F-1{XL(k) LS(k)}……(v)

Where, x(m,l) is the causal input image sequence in a shifted

coordinate system defined as x(m,l)=x (m-2M , l-L), this

coordinate axis shift is useful for the equivalent frequency

domain computation of the Radon transform [5], XL(k) is the

column wise Discrete Fourier Transform (DFT) of x(m,l) and

LS(k) is the DFT of the line function (shown in the fig.2)

w.r.t. ‘m’ and is given in eqn.(vii). This line function is used to

pick up the pixel intensities along different possible straight lines

through the image. XL(k) is a row vector of support [0:L-1]

and with the l’th element equal to x(m,l), LS(k) is a matrix of

support [0:S-1, 0:L-1] and S stands for the slope.

Inverse R-T is given by:

 x(m,l)=F-1{WS(k) SL(k) ………(vi)

where, WS(k) is the filtered Radon transform corresponds to

every row of the Radon transform passing through a filter of

frequency response | | and SL(k) is given in eqn. (viii).

LS(k) and SL(k) are given by:

)]),
2

1L
)(s(g

2

1N
[

N

k
2iexp(

)]),
2

1L
)(s(g

2

1N
[

N

k
2iexp(for N/2-d+1 k N-1

SL(k))]),
2

1L
)(s(g

2

1N
[

N

k
2iexp()s(h

)]),
2

1L
)(s(g

2

1N
[

N

k
2iexp()s(h

where, N=length of columns of the image after zero padding,

L=length of the rows without zero padding,

l=0,1,2,……L-1, grid points along the row.

S=total number of scanning slopes.

g(s) determines the slopes of the line function for

s=0,1,2,……S-1,

for linear slope sampling:

1S

1Ss2
Bsg ……. …… ……… (ix)

h (s) = 1……. ……… …… ... ……(x)

for linear angular sampling:

])Barctan[
1S

1Ss2
tan(sg , …..(xi)

])Barctan[
1S

1Ss2
(secsh 2 , (xii)

Although this frequency domain technique is very efficient, there

are two important periodicity constraints, imposed by Discrete

Fourier Transform which are:

(i) line function aliasing for the slope, s>r as shown in the fig.3

and (ii) approximation of linear convolutions by circular

(periodic) convolutions is not valid for the slope, s>r, where,

image aspect ratio, r=length of the image /width of the image.

Another important problem is poor dispersion characteristics of

the line function for higher slope. For a square image, r=1,

hence slope of the line function is also limited to, s 1 (i.e.

max()=45o).

Kelley-Madisetti [5] solved these problems by padding zeros

along the length of a square image to increase the aspect ratio, r

of the image and using a new line function (known as DKMD

formula) for the slope, s>1, which shows superior dispersion

characteristic for higher slope. Disadvantage of this technique

are that the number of computations which increases greatly

because of zero padding and depending on the slope value there

are three different flows of computations, which increases the

computation complexity of this algorithm.

To overcome the problem of the original technique to

transform the image features which are above 45o a square

image space is virtually divided into two parts (fig.4) (i)

image space below 45o (nonshaded part) and (ii) image

space above 45o (shaded part). Now for the image features

below 45o, X and Y axes remain unchanged, but for the

image features above 45o, the coordinate axes have been

inverted. Then clearly the features which were initially above

45o (w.r.t. X axes) are now within 45o. The Fast Radon

Transform (FRT) and Inverse Fast

Radon Transform (IFRT) of these two

parts are done separately. For the IFRT,

all the image features below 45o are

developed with unchanged coordinate

axes and referred as column wise

operation where as all the image

features above 45o are developed with

inverted coordinate axes which is

referred as row wise operation, then

two IFRT’s are added to develop the

complete image. Hence to cover all the features of a square

image there is no need to go for the slope, s> 45o. In this

way it avoids zero padding and requirement of any new line

function. It results a highly regular algorithm with a

significant reduction in number of computations and is given

by a flow diagram in the fig.5. The symmetry between the

forward and inverse algorithm in fig.5 are readily apparent.

The proposed IFRT represents a theoretically sound method

of inversion which avoids the need for data interpolation, and

requires no classical back-projection operation and it is

computationally as efficient as the forward FRT.

….(iv)

LS(k)

0<B<

0<B<

Fig.3 Line function for angle 60.95o showing aliasing.

……(vii)

……(viii)

 for(N/2-d+1) k N-1

 for 0 k N/2-d

X

Y

Fig.4 A square

image space divided

into two parts.

 , for 0 k N/2-d

V - 106

➡ ➡

.

As shown in fig.5 the main computational steps are 1-D FFTs,

Vector-Matrix multiplication and 1-D IFFTs which are discussed

below:

(i) FFT computation

Using decimation in time algorithm, the basic operation of a M

point FFT is: a =a+be-j(2 k/M)

b =a-be-j(2 k/M)

Where a , b , a, b are complex numbers. FFT computation may

be done using butterfly structure using CORDIC as a basic

processing element (fig.6) [8]:

Assuming our image to be processed is of size 256 256. As a

realistic approach if p number of processing elements (PE) are

used (p<256), total image is to be divided into p number of

discrete memory banks, called Local Memory (LM) each

containing 256/p number of columns. By accessing its LM, each

PE computes 1-d FFT. Results may also be stored in the LM.

Each LM comprises of two independent memory banks for

storing real and imaginary parts of the data.

(ii) Vector-Matrix (V-M) multiplication

21
2221

1211
21 bb

iexp)iexp(

iexp)iexp(
aa

CORDIC based PE shown in fig.7b may be used for V-M

multiplication and corresponding input to the PE will be (l,s,k).

Since the exponentials of the forward and inverse transform

matrices are known explicitly [eqn. (vii) and (viii)] transform

coefficients (’s) can be generated in real time without storing

I/P

Image

+

1-D FFTs

 Col.

1-D FFTs

 Row

IFRT

[>450]
IFRT

[<450]

Final

Image

1-D IFFTs

Col.
1-D IFFTs

Row

Filtering Filtering

1-D FFTs

Row

1-D IFFTs

Row

Vector-Matrix

Multiplication

FRT

[<450]

FRT

[>450]

1-D FFTs

Col.

1-D IFFTs

Col.

k

ls

k

sl

W[k,s]
Vector-Matrix

multiplication

W[k,s]
- -

H()H()

sl(k)

ls(k)

Fig.5 A flow diagram of the proposed FRT and IFRT

algorithm.

Fig.7a Proposed Hardware Architecture to realize

vector-matrix multiplication.

Fig.7b Processing element (PE)

 A CORDIC unit

V - 107

➡ ➡

 it in a memory. During V-M computation PE’s may be

connected in pipeline as shown in fig.7a.

(iii) IFFT computation is done in a similar way as the FFT

computation.

After completion of column wise operation PE may start

computation for the row wise data. The host processor has now

time to read processed data from the column memories. The host

can then further process (high level processing) those data. For

an input image, processed data of the two operations (row wise

and column wise) corresponding to a particular co ordinate (x, y)

may be added to develop a complete image, host processor can

also be used for this purpose. Same architecture can be used for

FRT and IFRT computations.

III. RESULT AND DISCUSSIONS

To verify our algorithm, an example (using MATLAB

simulator) is shown in the fig. 8 with a 128 128 image, which

illustrates the validity of the proposed algorithm. In the Kelly-

Madisetti algorithm [5], depending on the slope value s there are

three different flows of computations with complexities:

Number of computation=O(N3), when s 1.

Number of computation=O(N3logN), when 1<s r

Number of computation=O(N4), when s>r.

where, N is the zero padded length of the image and N>>L

(L=width of the image), r is the aspect ratio of the image. In the

proposed technique being max(s)=1, there is only a single flow

of computation with the number of computations equal to O(N3),

moreover N can be made equal to L without zero padding.

Therefore a significant reduction in the number of computation

is mainly because of using the most simple flow [O(N3)] of the

original technique and reduction of N itself to its minimum value

without zero padding. However, for better resolution, image

columns (or rows) are zero padded to double of its original

length. In order to suppress the high frequency noise associated

with the Ram-Lak filter, Shepp-Logan filter [1] was used in this

reconstruction example. From the discussions it becomes clear

that the complexity of the proposed algorithm is also much less

compared to its previous algorithm because it requires only one

type of flow instead of three different types of flows, which

makes it possible to propose an efficient VLSI parallel

processing architecture to implement the algorithm.

IV. CONCLUSION

An Interpolation free, highly regular algorithm for the Fast

Radon Transform [FRT] and Inverse Fast Radon Transform

[IFRT] has been proposed. The computational complexities in

the proposed method is much less compared to the existing

technique results in a significant reduction in number of

computations while preserving most of the important flexibilities

of the original technique such as parallelism, ability to take any

arbitrary set of projection angles etc. The high regularity and

natural concurrency of the proposed algorithm makes it a

suitable choice for VLSI implementation. Furthermore same

architecture can be used for real time FRT and IFRT

computations.

References:

[1]. A.K. Jain, “Fundamental of Digital Image Processing”,

Englewood Cliffs, NJ: Prentice-Hall, 1988.

[2]. S.R. Deans, “The Radon Transform and Some of its

Applications”, New York: John Wiley and Sons, 1983.

[3]. P. Hurst, K.W. Current, I. Agi, E. Shieh, “A VLSI

Architecture for 2-D Radon Transform Computations”, IEEE

Trans. ASSP, Vol.ASSP-2,pp. 933-936, April 1990.

[4]. G. Beylkin, “Discrete Radon Transform”, IEEE Trans.

ASSP, Vol.ASSP-35, No.2, pp. 162-172, Feb.1987.

[5]. B.T. Kelly, V.K. Madisetti, “The Fast Discrete Radon

Transform-I: Theory”, IEE Trans. Image Processing, Vol.2,

No.3, pp. 382-400, July 1993.

[6]. B.T. Kelly, V.K. Madisetti, “The Fast Discrete Radon

Transform”, IEEE Trans. ASSP, Vol.ASSP-3, pp.409-412,

March, 1992.

[7]. D. Lun, T.C. Hsung, W.C. Siu, “On the Convolution

Property of a New Discrete Radon Transform and its Efficient

Inversion Algorithm”, IEEE International Symposium on

Circuits & System, Vol.3, pp. 1892-1895, April 1995.

[8]. A. Banerjee et al., “FPGA realization of a CORDIC based

FFT processor for biomedical signal processing”,

Microprocessor & Microsystems, Vol. 25/3, pp. 131-142, May,

2001.

 8a. Original Image. 8b. Complete Reconstructed

 Image (fig.8d+fig.8f).

8c. RT for the features

 below 45o.

8d. IRT for the features

 below 45o.

8e. RT for the features

 above 45o.

8f. IRT for the features

 above 45o.

Fig. 8 An example

V - 108

➡ ➠

