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ABSTRACT

Many modern computer architectures feature fused multiply-add
(FMA) instructions, which offer potentially faster performance for
numerical applications. For DSP transforms, compilers can only
generate FMA code to a very limited extent because optimal use
of FMAs requires modifying the chosen algorithm. In this paper
we present a framework for automatically generating FMA code
for every linear DSP transform, which we implemented as an ex-
tension to the SPIRAL code generation system. We show that for
many transforms and transform sizes, our generated FMA code
matches the best-known hand-derived FMA algorithms in terms
of arithmetic cost. Further, we present actual runtime results that
show the speed-up obtained by using FMA instructions.

1. INTRODUCTION

Many modern processor architectures, including the Motorola G4,
Intel Itanium and Itanium 2, feature fused multiply-add (FMA) in-
structions, which perform an operation of the form

y = a ∗ x1 + x2 or y = a ∗ x1 − x2

as fast as a single addition or multiplication. Thus, by using these
instructions, a speed-up can be obtained for computations that con-
tain a mix of additions and multiplications. One example of such
computations are algorithms for linear digital signal processing
(DSP) transforms, such as the discrete Fourier transform (DFT),
the discrete cosine transforms (DCTs), and many others. Since
general-purpose compilers can only make very restricted use of
FMAs for these algorithms, there has been a number of efforts to
mathematically convert transform algorithms into FMA versions.

FMA algorithms for the DFT, based on the Cooley-Tukey FFT,
the split-radix FFT, the prime factor FFT, and Winograd’s algo-
rithms were developed in [1], [2]. Reference [3] presents FMA
algorithms for the scaled DCT, type II, of size 8 and its inverse in
one and two dimensions.

All of the available literature has one aspect in common: au-
thors modify the algorithms manually, acting as “human compil-
ers.” In this paper we describe an entirely automatic method to
convert any given transform algorithm into an FMA algorithm.
Based on our method we can prove an upper bound of the mul-
tiplications that are “left over,” i.e., not fusable with an addition.
We incorporated our FMA method as a backend into the SPIRAL
transform code generation system [4, 5], and used it to validate our
approach in two directions. First, we show that in many cases the
arithmetic cost of our generated FMA algorithms matches the cost
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of the best-known hand-derived algorithms. Second, we present
results showing the actual runtime speed-up achieved by generat-
ing FMA code versus the fastest SPIRAL generated scalar code.

Organization. In Section 2 we introduce the transforms we
consider, briefly explain the SPIRAL code generator, and intro-
duce the representation of algorithms as directed acyclic graphs
(DAGs). Section 3 describes two methods for converting a given
transform algorithm, represented as a DAG, into an FMA algo-
rithm, gives bounds for the arithmetic cost of this FMA algorithm,
and discusses the methods’ limitations. We conclude by presenting
experimental results in Section 4.

2. BACKGROUND

Transforms. There are many different DSP transforms used in
signal processing. In this paper we consider the DFT, its real ver-
sion (RDFT), the DCTs of type II–IV, and the inverse modified
discrete cosine transform (IMDCT). They are defined (in their un-
scaled versions) by the matrices

DFTn =
[
ωk�

n

]
0≤k,�<n

, ωn = e−2πj/n,

RDFTn = [rk�]0≤k,�<n, rk� =

{
cos 2πk�

n
, k ≤ �n

2
�

− sin 2πk�
n

, k > �n
2
� ,

DCT(II)
n =

[
cos k(2�+1)π

2n

]
0≤k,�<n

,

DCT(III)
n =

[
cos (k+1/2)�π

2n

]
0≤k,�<n

,

DCT(IV)
n =

[
cos (2k+1)(2�+1)π

4n

]
0≤k,�<n

,

IMDCTn =
[
cos (2k+1)(2�+1+n)

4n

]
0≤k<2n,0≤�<n

.

Note that DCT(III) is the transpose of DCT(II) and that IMDCTn

is an 2n × n matrix. The sizes 36 × 18 and 12 × 6 are used in
MP3 audio coding.

Algorithms. For each transform there are several different
ways to compute it recursively from smaller transforms. Math-
ematically, these recursions, or rules, can be written as a factor-
ization of the transform matrix into a product of structured sparse
matrices. Here are a few simple examples:

DFTnm = (DFTn ⊗1m) · Dn,m · (1n ⊗ DFTm) · Pn,m,

DCT(II)
2n = P2n · (DCT(II)

n ⊕DCT(IV)
n )S2n,

DCT(IV)
n = Sn · DCT(II)

n ·Dn,

IMDCTn = Sn · DCT(IV)
n ,

where P, D, S denote certain permutations, diagonals, and other
sparse matrices, respectively; their exact form is not of importance
in this paper. The symbols may have different meanings in differ-
ent recursions. Further, 1n denotes the n × n identity matrix, ⊕
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denotes the direct sum, and ⊗ the tensor or Kronecker product of
matrices, defined by

A ⊕ B =

[
A

B

]
, A ⊗ B = [ak,� · B], A = [ak,�].

Recursively applying these rules, until all occurring transforms
are expanded, yields a formula representing an algorithm for the
original transform. The choices of rules at each level yields, for
each transform, a large space of alternative formulas with practi-
cally equal arithmetic cost but different data flow. For example,
the current version of SPIRAL reports 19,504 different formulas
for the DCT(II)

16 .
SPIRAL. SPIRAL is a code generator for DSP transforms

[4, 5]. For a given transform, SPIRAL generates one out of many
possible formulas, i.e., algorithms, translates it into code, mea-
sures its runtime, and, in a feedback loop, triggers the generation
of different formulas, thus searching for the best match between
algorithm and target platform.

SPIRAL provides us with an ideal environment to include our
FMA generation technique and evaluate its performance. For ex-
ample, for a given transform, besides searching for the fastest FMA
code, we can also search for the FMA algorithm with the best arith-
metic cost, i.e., the one that requires the fewest operations.

DAGs. Our method for generating FMA algorithms does not
operate on the formula representation of an algorithm, but on a
different, equivalent representation of the algorithm as a directed
acyclic graph or DAG describing the data flow of the computation.
The nodes in the graph are the arithmetic operations, incoming
edges are the operands, and outgoing edges are the result. DAGs
are best explained through an example. Fig. 1 (a) shows an algo-
rithm for the DCT(II)

4 as sparse matrix product. The corresponding
DAG is shown in Fig. 1 (b). The white nodes are additions (or sub-
tractions), and the shaded nodes are multiplications by the denoted
constant. For simplicity we restrict ourselves to binary additions,
so that in our DAGs an addition of three values is represented as
two consecutive additions. Fig. 1 (c) shows an FMA DAG for the
DCT(II)

4 obtained from Fig. 1 (b) using our method presented in
Section 3. The rectangular boxes containing a number a denote an
FMA instruction y = a∗x1 +x2; the bold incoming edge denotes
the operand that is multiplied by a.

We consider two types of DAGs in this paper. Standard DAGs
only contain additions and multiplications and are denoted by D.
FMA DAGs contain additions, multiplications, and FMAs and are
denoted by D. We define the (arithmetic) cost of a DAG, written
cost(D) or cost(D), as its number of nodes.

3. FMA DAG GENERATION

The goal of our FMA generation method is to convert a given DSP
transform algorithm, represented as a standard DAG D, into an
FMA DAG D that requires fewer arithmetic operations and, bar-
ring numerical precision, has the same input/output behavior. For-
mally,

D ⇒ D, where cost(D) ≤ cost(D).

In other words, we want to fuse multiplications and additions in D
to the maximum extent possible. A straightforward way to achieve
this is to find subexpressions in D of the form a ∗ x1 + x2 and
convert them into an FMA, which is what general purpose compil-
ers do. However, this does not deal efficiently with cases such as
a∗x1 + b∗x2, which will always leave an unfused multiplication,
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Fig. 1. Different representations of an algorithm for DCTIII
4

a a⇒ a ∗ x ⇒ a ∗ x [0]1.

a b ab⇒ a ∗ (b ∗ x) ⇒ (a ∗ b) ∗ x [-1]2.

+ +⇒ x + y ⇒ x + y [0]3.

+
a

+a⇒ a ∗ x + y ⇒ fma(y, a, x) [-1]4.

+
a

b

+b/a a⇒ a ∗ x + b ∗ y ⇒ a ∗ fma(x, b
a , y) [-1]5.

Fig. 2. DAG transformation rules for the basic method. Applying a
rule changes the cost of the DAG by the number in square brackets.

whereas it is often possible to do better. As in previous work, we
use the fact that

a ∗ x + b ∗ y = a(x + b
a
y), (1)

i.e., the multiplication by a is propagated so that it may be fused
with subsequent additions. We present two methods based on this
principle:
• The basic method is an unconditioned successive propagation

of multiplications.
• The heuristic method improves the basic method by using a cost

measure to decide whether a propagation is beneficial.
Basic method. The basic method is based purely on a propa-

gation of multiplications. It can be described by a set of DAG ma-
nipulation rules that cover all possible local node configurations.
There are five essential rules, which are given in Fig. 2 in two
equivalent forms: as a DAG manipulation and as a code manipula-
tion. The rightmost column shows the effect of the rule on the cost
of the DAG in square brackets. The rules cover all possible cases
of nodes.

Algorithm 1 (Basic method). Given a standard DAG D for a
transform algorithm, convert D into an FMA DAG D with equiv-
alent input/output behavior.

Traverse the nodes of the DAG from input to output, visiting
each node exactly once. In each step, an unvisited node is selected
for which all predecessors (operands) have been already visited.
If the current node is a multiplication:
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• If the predecessor is a multiplication, apply rule 3 (fuse the
multiplications).

• Otherwise, if there is no predecessor or the predecessor is an
addition, apply rule 1 (do nothing).

If the current node is a addition:
• If exactly one predecessor is a multiplication, apply rule 4
(create an FMA).

• If both predecessors are multiplications, apply rule 5 (create
an FMA and propagate a multiplication).

• Otherwise, apply rule 2 (do nothing).
Terminate when all nodes have been visited. Return the obtained
DAG D.

Informally, the algorithm always propagates a multiplication
if possible, otherwise it tries to create an FMA first, and if this
is not possible it resorts to using the base-case multiply and add
rules. Note that propagation may result in two consecutive multi-
plications by a constant, which can then be premultiplied (rule 3,
which is often referred to as constant folding).

It is intriguing that this rather simple algorithm allows us to
prove an upper bound for the multiplications left “unfused” and
thus an upper bound for cost(D).

Theorem 1. Assume that the standard DAG D for a DSP trans-
form algorithm contains A additions, M multiplications, and n
outputs. Further, assume the output D of Algorithm 1 contains A
additions, M multiplications and F FMAs. Then

A + F = A, (2)

M ≤ n, (3)

cost(D) = A + M + F ≤ A + n. (4)

Further, the bounds in (3) and (4) are sharp.

Proof. Inspecting rules 1–5 in Fig. 2 shows that each one leaves
the number of additions (in the mathematical sense, i.e., also count-
ing the additions in FMAs) unchanged. This yields (2).

Inspecting rules 3–5 shows that each multiplication node with
a successor is either converted into an FMA (rules 4 and 5), or
propagated (rules 2 and 5). Thus, every multiplication in D has to
be at the output. Since the number of outputs is n, (3) follows; (4)
is the sum of (2) and (3).

Consider a DAG for a diagonal matrix, i.e., every input is mul-
tiplied to yield the output. In this case equality holds in (3) and (4),
thus these bounds are sharp.

Implementation. For the implementation of the basic method
we have used an adapted version of iburg [6], a generator of code
generators for expression trees (each node has a unique parent).
iburg takes as input a specification of a composite instruction set
in the form of a cost-weighted tree grammar and a set of functions
which traverse the expression tree. It outputs a code generator that
converts a given tree into a minimal-cost expression tree built from
the specified instructions (called tree cover) in O(n) time, where
n is the number of nodes in the tree.

In our case, we need a DAG cover (versus a tree cover) for
which iburg can not be directly used. We have modified iburg to
generate code generators for DAGs using the approach described
in [7]. The author proposes treating overlapping tree constituents
of the DAG independently of each other, discussing the optimal-
ity for this case. In general, optimality is no longer guaranteed,
because shared nodes can cause suboptimal covering.

For the basic method, the tree grammar from Fig. 2 was used
directly and the iburg-generated code generator is equivalent to
Algorithm 1. Since the number of rules is small, it is easy to iden-
tify instances of suboptimal covering, i.e., the shortcomings of Al-
gorithm 1. The main problem is demonstrated in Fig. 3. Since
the basic method considers the overlapping subtrees separately it
will propagate multiplications in two separate subtrees, resulting
in cost of 4 (D); not propagating a yields the (optimal) cost of 3
(Dopt).

a

b

c

+

+

+a/b

+a/c

b

c
a

+b

+c

⇒ or

D (cost = 5) D (cost = 4) Dopt (cost = 3)

Fig. 3. Example were the basic method is sub-optimal.

Heuristic method. As a workaround to the problem in Fig. 3,
we introduce a simple heuristic in the iburg rules: we assign a
penalty for propagating shared multiplications. We set the cost of
a regular operation to 10 and the penalty of 1 for propagation of
a shared multiplication. Thus, the shared multiplication is propa-
gated only if it decreases the cost of at least one outgoing path.

For example, in Fig. 3, the propagation of the shared multi-
plication a does not decrease the cost of any path, so the heuristic
method will choose not to propagate it and produces Dopt instead.

Unfortunately, with this change, Theorem 1 does not hold any-
more. iburg defers the actual code generation decisions until the
entire DAG has been visited, which can lead to a propagation of
a shared multiplication along one path and a computation of the
same multiplication along another path, which in turn leads to an
artificially high number of total multiplications. Thus, using the
heuristic method may lead to a worse cost compared to the basic
method. However, for the DAGs we evaluated, this was not a prob-
lem. Since SPIRAL searches through a large number of different
algorithms, it can discard those for which the heuristic method per-
forms worse.

4. RESULTS

To evaluate our FMA generation methods, we included them in
the SPIRAL code generator. This way, we were immediately able
to perform tests for a variety of transforms and a large number of
different algorithms. Furthermore, we could use SPIRAL’s search
to find, for each transform, the FMA algorithm with minimal cost
and the one with the fastest runtime. In both cases we considered
the same transforms, namely those defined in Section 2. Since our
method is currently restricted to producing straight-line code (i.e.,
without loops), we only consider small transforms of sizes n ≤ 32.

Arithmetic cost. In this set of experiments we let SPIRAL
search for algorithms with minimal cost. The results are shown
in Table 1. The first column shows the transform; the second col-
umn its size. The third column is the minimal cost of a standard
DAG (algorithm) D found. The fourth and fifth columns (D1 and
D2) show the best cost found with the basic and heuristic method,
respectively. Columns three through five represent independent
searches, i.e., the underlying algorithms most likely differ. The
last column shows the best known (BK) cost of an FMA algorithm
and the reference, to our best knowledge. A dash indicates that we
did not find a reference.
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SPIRAL
n

D D1 D2
BK D

DFTn
3 16 12 12 12 [2]
4 16 16 16 16 [2]
5 52 40 40 32 [2]
6 44 36 36 -
8 56 52 52 52 [1]
16 168 144 144 144 [1]
32 456 372 372 372 [1]

RDFTn
3 6 5 5 6 [2]
4 6 6 6 6 [2]
5 20 14 14 16 [2]
6 18 16 16 -
8 22 20 20 20 [2]
16 70 58 58 58 [2]
32 198 156 156 156 [2]

DCT(II)
n

4 13 10 10 -
8 41 30 30 -
16 113 82 82 -

DCT(III)
n

4 13 8 8 -
8 41 26 26 -
16 113 72 72 -

DCT(IV)
n

4 20 12 12 -
8 56 36 36 -
16 144 96 94 -

IMDCTn
6 33 21 21 -
18 168 109 109 -

Table 1. Best arithmetic cost found by SPIRAL for standard DAGs
and FMA DAGs along with the best known FMA algorithms

We observe that our method always reduces cost and that the
best costs found between both methods are equal. Further, our
costs match the best-known costs, if available, with the exception
of DFT5 since Winograd’s algorithms used in [2] are not yet in-
cluded in SPIRAL. For the RDFT of sizes 3 and 5 we improve on
[2] . More importantly, we provide new FMA algorithms for a va-
riety of transforms including the IMDCT18 used in MP3, in which
case the FMA cost is about 35% lower than the original cost.

Runtime. In this set of experiments, we searched (again using
independent searches) for the best runtimes of standard DAGs D,
and FMA DAGs D created with the basic and heuristic method
(D1 and D2). The benchmarks were performed on a Power Mac
G4 933 MHz, using Apple’s gcc 1041 (based on gcc 3.1) for the
PowerPC; the command line options were -O2 -fomit-frame-pointer.

The results are collected in Table 2, which is structured anal-
ogously to Table 1. For each found algorithm, we provide its run-
time in nanoseconds (ns) and its arithmetic cost (ops). For the
fastest FMA DAGs found we provide the runtime speed-up (spd)
compared to the best standard algorithm found.

We observe that for algorithms with few operations, FMA
code is actually slower, but for larger sizes it is consistently faster,
up to 30% for a DFT32. Further, lower arithmetic cost does not
necessarily imply faster runtime. In fact in most cases, the fastest
algorithms are not the ones with the lowest arithmetic cost. Fur-
ther, both FMA generation methods performed about equally well.
Finally we note that Table 2 is a fair evaluation of the speed-up
one can expect from FMA code due to SPIRAL’s search over the
algorithm space.

Conclusion. We presented an automatic method to convert
any DSP transform algorithm into an FMA algorithm, proving an
upper bound for the left-over multiplications. We included this
method in SPIRAL to enable FMA code generation for a large

D D1 D1n ns ops ns ops spd ns ops spd

DFTn
3 65 16 72 12 -9% 71 12 -8%
4 60 16 68 16 -13% 68 16 -12%
5 152 52 132 40 13% 130 40 14%
6 150 44 129 36 14% 128 36 15%
8 181 56 152 52 16% 151 52 17%
16 459 168 419 144 8% 426 144 7%
32 1640 456 1150 380 30% 1150 380 30%

RDFTn
3 42 6 44 5 -6% 45 5 -6%
4 36 6 37 6 -2% 37 6 -3%
5 77 20 89 14 -16% 80 14 -4%
6 61 18 69 16 -14% 69 16 -14%
8 78 22 87 20 -12% 89 20 -14%
16 214 70 187 60 13% 191 60 11%
32 576 210 473 164 18% 470 164 18%

DCT(II)
n

4 52 13 56 12 -7% 57 11 -8%
8 113 41 105 36 7% 107 33 5%
16 280 113 231 96 18% 229 90 18%

DCT(III)
n

4 63 13 60 9 3% 61 9 2%
8 103 41 102 29 1% 102 29 1%
16 292 113 259 81 11% 257 81 12%

DCT(IV)
n

4 64 20 69 16 -7% 69 16 -8%
8 135 56 115 44 15% 116 40 14%
16 330 144 326 112 1% 324 104 1%

IMDCTn
6 112 34 107 33 4% 112 30 0%
18 485 168 444 147 8% 446 120 8%

Table 2. Fastest runtimes (and associated cost) in ns found by
SPIRAL for standard DAGs and FMA DAGs.

number of transforms. In terms of arithmetic cost our method
matches most of the best-known FMA algorithms and also pro-
duces new FMA algorithms. A runtime evaluation shows a speed-
up of up to 30% for all except very small sizes. Our method is
currently restricted to straight-line code but will be extended to
loop code and thus to all transform sizes in the near future.
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