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ABSTRACT

We reformulate the problem of finding the sparsest rep-
resentation of a given signal using an overcomplete dictio-
nary as a bounded error subset selection problem. Specifi-
cally, the reconstructed signal is allowed to differ from the
original signal by a bounded error. We argue that this
bounded error formulation is natural in many applications,
such as coding. Our novel formulation guarantees the spars-
est solution to the bounded error subset selection problem
by minimizing the number of nonzero coefficients in the so-
lution vector. We show that this solution can be computed
by finding the minimum cost flow path of an equivalent net-
work. Integer programming is adopted to find the solution.

1. INTRODUCTION

Classical subset selection arises in many signal processing
applications. In particular, most signals cannot be repre-
sented by a single dictionary. For example, Fourier bases
are suitable for signals which are rich in harmonics while
wavelet dictionaries can be used for signals that include
transients. Hence, overcomplete dictionaries are required to
cover the inherent complex signal structure. In the subset
selection problem (SSP) it is required to find the best signal
representation for a signal vector b using the overcomplete
dictionary represented by the N dimensional vectors span-
ning the column space of the matrix A. By construction,
the number of basis vectors in the dictionary M � N . Then
it is required to find the solution vector x such that

Ax = b (1)

It is also required that the solution be sparse, i.e., the vector
x should have a minimum number of non-zero coefficients.
The solution satisfying the previous sparseness requirement
is called a sparse solution. It is known that the SSP is NP-
complete [1]. In particular, approximate solutions can be
found such that

‖ Ax − b‖p ≤ ε (2)

for some ‖ .‖p and ε ≥ 0. Several strategies have been
developed for solving the SSP. For example, the Method
of Frames (MoF) finds the solution that minimizes the l2
norm which leads to the solution closest to the origin [2].
On the other hand, the solution of the Basis Pursuit (BP)

algorithm minimizes the l1 norm [3]. Mallat et. al de-
veloped the Matching Pursuit (MP) technique in which the
signal is iteratively decorrelated from the basis vector which
has maximum correlation with the residual [4]. The Best
Orthogonal Basis (BOB) is designed for wavelet and cosine
packet dictionaries which finds the solution based on a min-
imum entropy criterion [5]. The previous techniques do not
necessarily find the sparsest solution since the optimization
criterion does not address the sparsity issue. The authors in
[6] found the sparse solution for certain structured matrices.
For a very good discussion on the sparseness constraints the
reader is referred to [7].

In this paper we address the sparseness problem directly
by finding the solution that minimizes the number of non-
zero coefficients in the solution vector. This is achieved by
reformulating the subset selection problem as a bounded
error problem which allows for exact solution, if it exists.
In applications such as speech and audio coding, one could
have bounds on the error through the masking model. In
particular, the equality constraint in (1) could be relaxed
according to

bmin ≤ Ax ≤ bmax (3)

Hence, the name Bounded Subset Selection Problem (BSSP).
Where, bmin = b− �ε1 and bmax = b + �ε2. With �ε1 and �ε2
are error vectors representing the error introduced by the
masking model [8]. Then, instead of minimizing the norm
of the error as in [2, 3, 4] we bound the error signal by �ε1
and �ε2. As stated earlier, bounding the error signal rather
than bounding the norm of the error finds application in
speech and audio coding, in which the energy of the error
does not necessarily represent the quality of the coded sig-
nal. In particular, the quality measure is mainly subjective,
the temporal structure of the coded signal is more impor-
tant in determining the signal quality than the energy of
the error. [8]. In the following section, a brief overview to
the network flow model and integer programming used in
solving (3) is given. Simulation results are given in section
3.

2. THE PROPOSED APPROACH

In this section, we will formulate the solution strategy for
finding the sparsest possible solution to (3). To find the
required solution, we will adopt a network flow model ap-
proach. We will show that finding the sparse solution is
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equivalent to finding the minimum cost path between two
points in an equivalent network. However, this path is sub-
ject to the constraints imposed by the signal to be repre-
sented as illustrated below.

2.1. Network Flow Model

Consider a network that has M nodes and there is a flow
that starts from the source node, S, and ends at the sink
node, T . Each node is connected to the other nodes via
arcs. The minimum cost flow problem finds the minimum
cost continuous path from S to T . The minimum cost flow
network has some constraints which we mention here.

• The flow path should be a continuous path. i.e., any
path from the source to the sink should be connected
and no node can be considered more than once.

• Since the flow starts from S and ends at T , then arcs
connected to S should be outgoing from S while arcs
connected to T should be terminating at it, i.e., it is
not allowed for S to accept flow and at the same time
it is not allowed for T to produce any flow.

• Except for S and T , the flow can go from any two
nodes in both directions.

• The network is balanced, i.e., except for S and T each
node should have zero accumulation rate. This can
be achieved by not allowing self-returning arcs at any
node which assures that the flow will not accumulate
at any node.

• Each arc is weighted with a cost and, if necessary, a
weight. The total path cost and weight is the sum of
all costs and weights along that path.

Fig. 1 shows a simplified network of 5 nodes that satisfies
the previous constraints.

1

S = 2 T = 5

3

4

Figure 1: A Network with 5 nodes

The solution to the network flow problem lies in finding
a continuous path connecting S to T with a minimum cost.
Several approaches are available for the network flow prob-
lem solution including dynamic and linear programming [9].
In order to relate the network flow problem to the BSSP,
let each node represents a possible candidate in the over-
complete dictionary A. In particular, let node k represents
the N -dimensional vector ak in the N×M matrix A, where

M � N in practical cases. It should be noted that both
the source, S, and the sink, T , nodes are represented sim-
ilarly as they could be part of the solution. This issue is
addressed in section 2.2.2. Since we would like to find the
minimum cost path in going from the source to the sink
subject to certain constraints; then the problem at hand is
trying to identify the least possible number of vectors ak

that best fits the signal represented by the vector b. i.e.,
we are trying to minimize the number of vectors that best
represent a given signal. As stated earlier, each arc is as-
signed a certain cost, cij , and weight, wij . Where cij is the
cost of going from node i to node j and wij is the weight
of the arc connecting nodes i and j.

2.1.1. Costs and Weights Assignment

Since each vector, ak, is a possible candidate in the solu-
tion, then the corresponding node should also be a possible
candidate in the minimum cost path. Hence, all arcs should
have the same cost in the network, i.e.,

cij = 1 ∀ i, j (4)

equation (4) indicates that each vector in the dictionary has
the same probability of being selected. It should be noted
that cij = cji.

Since the solution to the minimum cost flow problem
is not unique, it is necessary to assign weights to the cor-
responding arcs. Assigning weights to each arc guarantees
that the subset selection problem solution will satisfy the
constraints imposed by the signal to be analyzed. Hence,
according to (3), in order to find the sparse solution to the
BSSP, the network model should satisfy

bmin ≤
∑
k∈Ω

ak =

j=T∑
i=S

wij ≤ bmax. (5)

where Ω is the solution set for the basis vectors. Assigning
the weights wij as follows:

wij =

{
2ai − aj if i �= S, j �= T
ai − aj if i = S, j �= T
2ai + aj if i �= S, j = T

(6)

guarantees that
∑j=T

i=S
wij =

∑
k∈Ω

ak. It is clear from (6)
that wij �= wji.

2.1.2. Imposing Sparseness

Sparseness is imposed by finding the path that minimizes
the total number of nodes in going from the source to the
sink, hence minimizing the total cost subject to (5). Putting
the previous formulation into a mathematical context, then
the solution to the BSSP is equivalent to the solution of the
following optimization problem:

min
i,j

j=T∑
i=S

cij (7)

subject to bmin ≤
j=T∑
i=S

wij ≤ bmax
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I what follows we will discuss the integer programming ap-
proach in solving (7).

2.2. Integer Programming Solution

To correctly define the variables in the integer program, an
Adjacency Matrix (AM) needs to be defined. An adjacency
matrix is another form of representing the network which
makes it easier to relate variables together. In general, a
network of M nodes has an AM of size M × M and each
cell in the matrix represents an arc in the original network
and its value is the cost of this arc as in (4). For illustration
purposes we will consider the adjacency matrix correspond-
ing to the network in Fig. 1. The network in Fig. 1 has
only 5 nodes from which S = 2 and T = 5 and its AM is
represented by

AM =

⎡
⎢⎢⎣

α α 1 1 1
1 α 1 1 α
1 α α 1 1
1 α 1 α 1
α α α α α

⎤
⎥⎥⎦ (8)

where α is a large number that represents a high cost. Vari-
able α also represents invalid cells in the sense that its co-
ordinates do not represent a valid arc in the network. For
example, α is used in the second column of the AM to rep-
resent invalid cells. These cells are invalid since we are not
allowed to go to the source, S = 2, from any other node
as described in section 2.1. The same is true for the fifth
row and diagonal cells. It should be noted that the cell
AM(S, T ) is also invalid to avoid a direct transition from
the source to the sink.

Let yij ∈ {0, 1} be the variable associated with the cell
AM(i, j) that captures the solution to the optimization (7),
i.e., yij = 1 if the cell AM(i, j) is a valid cell in the flow
path and yij = 0 if not. Also, let Γ be the set of valid cells,
then one can rewrite the network constraints as follows∑

i∈Γ

ySi = 1 (9)

∑
i∈Γ

yiT = 1 (10)

∑
k∈Γ

yki =
∑
j∈Γ

yij , i /∈ {S, T} (11)

∑
i∈Γ

yij ∈ {0, 1}. (12)

yij + yji ∈ {0, 1}. (13)

Constraints (9) and (10) ensure that the sequence starts
from the source and ends in the sink respectively. On the
other hand, (11) takes care of the continuity of the flow
by restricting the amount of the flow coming out of any
node to be equal to the amount of the flow entering that
node, i.e., it captures the continuous path with minimal
cost. Constraint (12) ensures that no basis vector is chosen
more than once in any solution. Finally constraint (13) is
imposed to avoid having two isolated nodes, which guar-
antees that the captured solution will not be of oscillatory
nature.

2.2.1. Integer Programming

Transforming the problem into an integer program requires
mapping the AM into a one dimensional vector. This is per-
formed by lexicographically ordering the AM into a vector
f = vec(AMT ) of dimensionality M2 × 1, and transforming
yij into xk ∈ {0, 1} according to the mapping

k = (i − 1)M + j. (14)

It should be noted that each element of the vector f rep-
resents the cost of the corresponding arc in the network.
Network constraints described in the previous subsection
are imposed onto the constraint matrix B and the corre-
sponding constraint vector c. Similarly, arc weights are
represented by the N × M2 constraint matrix W by re-
arranging its column space according to (14). Then, the
network flow solution can be found by solving the following
binary optimization problem

min
x

fT x (15)

subject to

⎧⎪⎨
⎪⎩

Bx = c
Wx ≥ bmin

Wx ≤ bmax

xk ∈ {0, 1}.
It is clear that (15) follows the standard form of binary
integer programming and can be solved using the branch
and bound algorithm [10, 11]. According to the network
model in Fig. 1, one needs to define the source and the
sink. However, the solution set of subset selection problem
does not need to start or end with a certain vector. Assume
a solution to (15) is found which consists of L bases vectors,
then all the L! combinations to these bases will also be a
solution to (15). In order to adapt the network model to
the subset selection problem, we will proceed using a vector
space interpretation as follows

2.2.2. Vector Space Interpretation

Since each basis in the dictionary can be represented by
a vector in the N -dimensional space, then the dictionary
can be represented as an N -dimensional object in the N -
dimensional space. For illustration purpose, consider the
3-D case with M = 8. The corresponding object is shown
in Fig. 2. According to the network model, each node in
the object represents a node in the corresponding network
and a valid basis in the solution set. The source and the
sink can now be chosen as any 2 nodes. However, this would
enforce the vectors corresponding to S and T , to be part of
the solution. In order to remove this constraint, both the
source and the sink can be chosen to be dummy nodes, i.e.,
any two vectors which are not included in the dictionary. A
simple, yet effective choice is to let S = T as shown in Fig.
2 where the dummy vector is the mean vector. The system
of equations in (15) is modified accordingly

min
x

fT x (16)

subject to

⎧⎪⎨
⎪⎩

Bx = c
Wx ≥ bmin + vS + vT

Wx ≤ bmax + vS + vT

xk ∈ {0, 1}.
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where vS and vT are the vectors representing the source
and the sink respectively. Here, vS = vT . In this case, the
number of the retrieved bases will be increased by two to
accommodate for the dummy nodes, namely vS and vT .
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Figure 2: A 3-D object representing an overcomplete dic-
tionary consisting of 8 vectors.

According to the network model, the solution to the
BSSP is a continuous path from the source to the sink pass-
ing through the appropriate nodes. For illustration pur-
poses, a possible path is shown in Fig. 3 as the bold line
connecting nodes { S, 4, 6, 7, 1, T} together.
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Figure 3: The bold line represents a possible solution to the
BSSP

3. SIMULATION

In order to show that the proposed approach finds the spars-
est solution to the subset selection problem, we compare the
proposed algorithm with the MoF and the BP algorithms.
Consider a signal which is represented by the vector b =
[4.9728 6.5135 7.0047 8.8925 7.1056 5.8194 6.1580 7.0885
5.6537 5.3230]T which can be represented as the sum of the
four column vectors b = b1 + b2 + b3 + b4 in the set Ω =
[b1 b2 b3 b4], not shown here for the sake of space. It is
required to find the sparsest solution to the perturbed vector

bp = b + �ε where �ε = [0.8913 0.7621 0.4565 0.0185 0.5247
0.6412 0.0162 0.8369 0.8035 0.6978]T , is a random pertur-
bation. The overcomplete dictionary is formed by M = 30
random vectors each of dimension N = 10. The vectors of
the set Ω were placed at random locations in the dictionary.
Both the source and the sink are represented by the mean
vector of the dictionary.

The solution was as follows: the MoF, as expected, gave
a dense solution, that is, the number of non-zero elements in
the solution vector equals to the size of the dictionary, which
is 30. While the BP algorithm finds a solution which has 10
non-zero elements. Surprisingly enough, by letting �ε1 = �0
and �ε2 = �ε, the BSSP finds the solution vector which has
only four non-zero coefficients that corresponds to the four
vectors in Ω. Thus, it finds the exact and sparsest signal
representation even though the input signal was perturbed.
Unlike ours, the failure of the BP and the MoF to find the
sparsest solution can be understood from the fact that they
are not designed to minimize the number of bases in the
solution.
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