
BIT-PLANE AND PASS DUAL PARALLEL ARCHITECTURE
FOR COEFFICIENT BIT MODELING IN JPEG2000

Chao Xu, Yanju Han, and Yizhen Zhang

Peking University, Beijing, 100871, CHINA

ABSTRACT

In this paper, the bit-plane and pass dual parallel
architecture for coefficient bit modeling in JPEG2000 is
proposed. It is a very high speed and efficient structure
that is capable of encoding all bits of the wavelet
coefficient in only one scan, and largely decreases the
memory requirement. Additionally in order to decrease
the logic circuit requirement we propose a partial
primitive-parallel technique to replace the whole channel-
parallelism. Experimental results show that the
architecture can encode about 15 times more than the
pass-parallel encoding for the coefficient with 16 bits.
And it only requires 3K bits memory instead of 16K bits
for the pass-parallel encoding.

1. INTRODUCTION

JPEG2000 is the latest image compression standard which
has been developed to meet the demand for efficient,
flexible, and interactive image representation [1]. The
central concept in JPEG2000 is scalability based on
EBCOT with the fractional bit-plane (FBP) coding
technique. The FBP coding divides each bit-plane coding
into 3 coding passes that makes the code stream more
scalable but the coding computation more complex. For
example, if the wavelet coefficient is of 16 bits, one sign
bit, 15 magnitude bits, the FBP coding has to suffer from
14 3+1=43 scans that usually take over 50% of the whole
coding time. The 5-level wavelet decomposition takes less
than 25% of the coding time.

To reduce the FBP coding time, many methods have
been presented, such as the subband-parallel coding [2],
the optimal serial coding [3] and the pass-parallel coding
[4][5]. The methods increase the coding speed 2 to 3 times.

Here we present a novel method of the bit-plane and
pass dual parallel (BPDP) coding that can increase the
coding speed 43 times or more and can complete the FBP
coding within one scan.

The rest of the paper is organized as follows. In
Section 2, a brief description about the FBP coding, called
coefficient bit modeling in JPEG2000, is given. In Section

3, the issues of the BPDP coding are discussed. And the
corresponding architecture is presented in Section 4.
Experimental results are illustrated in Section 5, and the
paper is concluded in Section 6.

2. THE FBP CODING ALGORITHM

The JPEG2000 encoder mainly contains color
transformation, wavelet transformation, quantization,
coefficient bit modeling (the FBP coding), arithmetic
coding and data ordering. The FBP coding is performed
on wavelet coefficients to produce pairs of context (CX)
and decision (D) that are provided to arithmetic coding.

Before the FBP coding, each wavelet subband is
partitioned into rectangular blocks called code-blocks
whose typical dimensions are 64 64 or 32 32 coefficients.
In this paper, the 64 64 code blocks are used as usual.
Each code-block is encoded independently, bit-plane by
bit-plane, and pass by pass in each bit-plane. The bit-
planes are ordered from most significant magnitude bit-
plane to least significant magnitude bit-plane, and the
most significant bit-planes with all zero bits are skipped.

The FBP coding consists of 3 coding passes in each
bit-plane coding: significance propagation pass (SP),
magnitude refinement pass (MP) and cleanup pass (CP).
And 3 associated binary state variables are required.

1) Coefficient significance state , changes from
insignificant =0 to significant =1 whenever the
most significant bit pM equal to one is encoded.

2) Coefficient refinement state ’, changes from 0 to 1
whenever the refinement is performed, in fact, when
the bit pM-1 is encoded.

3) Magnitude bit p coded state , changes from 0 to 1
once the bit p is encoded.

In a bit-plane coding via the 3 variables the SP is
applied to the coefficient X that is insignificant and has at
least one significant neighbor coefficient among the 8
neighbor coefficients shown in the left of Figure 1. The
MP is used to the coefficient that has become significant.
The CP is utilized to all the remaining coefficients. The 3
coding passes produce the pair of CX and D with 4 coding
primitives below.

1) Zero coding (ZC), is used in the SP and the CP for
the magnitude bit p (p pM) to create 9 pairs of CX

V - 850-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

and D. The D is equal to the bit p.
2) Sign coding (SC), is used in the SP and CP and only

follows the bit pM to create 5 pairs of CX and D.
This D is generated by exclusive OR operation of the
sign bit and the XOR bit relative to the context.

3) Magnitude refinement coding (MRC), is used only in
the MP for the magnitude bit p (p pM) to create 3
pairs of CX and D. This D is equal to the p.

4) Run length coding (RLC), is used in the CP for a
column of p (p pM) to create 2 pairs of CX and D.
For one CX, the D is zero if the 4 p bits of the
column are all equal to zero. For the other CX, the D
is of 2 bits representing the position of the first pM.

The 4 primitives are employed at individual situation.
The 3 passes work in a special scan pattern, as shown

in the right of Figure 1, which starts at the top left of a
code-block, scans the first 4 coefficients of the first
column, then the first 4 coefficients of the second column
and so on. Every 4 rows form a strip. The scanning is
done strip by strip till the bottom right of the code-block.

In the first most significant bit-plane with non-zero
elements, only the CP is utilized in terms of the primitive
rules. In the other lower bit-planes, the SP is applied first;
and then the MP is used; finally the CP is utilized. So if
the wavelet coefficient has 15 magnitude bits, 14 3+1=43
scans are required for the FBP coding. Obviously, it is
hard work especially for the real-time applications.

3. DUAL PARALLEL CODING

A large number of scans consume not only much time but
also a lot of power for accesses to memory. To solve the
problem, parallel processing is usually a good solution. In
JPEG2000, each code-block is independent. So the code
block parallel coding is easy to implement, but it requires
much more circuit resource. As in [2], 3 code-blocks
parallel coding requires 3 independent coding channels. If
to encode one coefficient per cycle, 43 independent
channels have to be provided, that will cost a lot of circuit
resource. For memory only, 20 43=860K bits are needed.

Here we present the bit-plane and pass dual parallel
(BPDP) coding. It can encode one coefficient per cycle,
and it does not need 43 independent channels. As the

BPDP coding encodes only one coefficient rather than 43
coefficients, it does not need 43 independent coding
channels. And it requires much less memory. Here we
presented a partial primitive-parallel technique that
designs the number of primitives instead of channels in
terms of requirement.

In the following, the preprocessing part is introduced
first, and then the BPDP coding is discussed.

3.1. Preprocessing

The preprocessing that makes each bit-plane coding
independent is the basis of the BPDP coding. It tries to
produce the two associated variables p, ’p for each
magnitude bit p. The other variable p needs only to
initialize to zero before encoding.

As introduced in Section 2, the p changes from zero
to one when the first significant bit pM is encoded. Thus
the p (p pM) must be zero; otherwise it equal to one.
The p can be derived from the higher magnitude bits of
the coefficient. Assume a coefficient with P-1 magnitude
bits, and use the symbol “#” as “OR” logic operator.

p = p+1 # p+2 #…# P-2 (1)
Similarly, it can be derived that the ’p (p pM-1)

must be zero; otherwise equal to one, ’p = p+1. So in the
BPDP coding, the ’p can be neglected.

For pass parallel encoding, the key is to provide the
right variables p for each pass, even if it is changed in the
SP or CP. In terms of the order of the encoding, for the
MP and CP, the p changed in the SP is required. While
for the SP and MP, the p must not be changed in the CP.
A general solution is to have the SP start earlier than the
MP, and to have the CP start later than the MP. However
the method can consume much memory.

For simplicity, we add a variable p to represent the
change of the p in the CP, and let the p change only in
the SP. Thus, the MP and CP can start simultaneously and
much memory can be saved. In the SP and MP, use the p

for encoding, while in the CP, the p# p is used.

3.2. The BPDP Coding

With the p, p and p+1, each magnitude bit p and the
sign bit of the coefficient can be encoded independently.
As the sign bit only follows the first significant bit pM

to be encoded, it needs only one SC primitive. Similarly,
only one MRC primitive is required for the first
refinement bit pM-1. The ZC and RLC primitives can be
needed for all magnitude bits of a coefficient, so P-1 sets
of ZC and RLC primitives are provided.

As mentioned above, the SP should start earlier than
the MP and CP. So two coefficients are encoded at a time,
correspondingly two sets of ZC and SC primitives are
required respectively for the SP and CP for the two

strip1

strip2

D0 V0 D1

H0

D2 V1 D3

H1X

(a) (b)
Fig. 1: (a) X and its 8 neighbors.

(b) Scan pattern of a code block.

4
rows

MP SP
CP

V - 86

➡ ➡

coefficients.

ZC RLC SC MRC Total Memory Scans Speed
serial 1 1 1 1 4 20Kbits 43 1
subband
parallel

3 3 3 3 12 60Kbits 15 3

Optimal
serial

1 1 1 1 4 20Kbits 43 2.5

Pass
parallel

2 1 2 1 6 16Kbits 15 3

Dual
parallel

29 15 2 1 47 3Kbits 1 43

In the CP, the RLC primitive is used to
encode one column of bits. Before it is used,
it needs to evaluate each bit of the column
whether the condition holds. The evaluation
can delay the encoding process. To avoid the
delay, we add a column state variable ,
which is decided by the preceding SP or CP.
When the column has all CX=0 and all =0
in the SP, set the to 1. When the column
has all =0 in the CP, also set =1. So if the
previous, current and following columns all
have =1, the RLC primitive can be used. If only the
following column has =0, then evaluate whether all the
equal to zero. When it is true the RLC primitive is used.

Table 1. Resource and performance comparison with other architectures

Table 1 lists the numbers of the primitives and the
memory required in some typical methods. The serial
coding needs 4 primitives, 20K bits memory and 43 scans.
Its coding speed is assumed to be 1 as a benchmark. The
subband parallel coding [2] requires 12 primitives and
60K bits memory, and increases the coding speed to 3.
The optimal serial coding [3] needs the primitives and
memory as much as the serial, and enhances the speed to
2.5 around. The pass parallel coding [4] needs 6
primitives, and increases the speed to 3. Our BPDP
coding requires 47 primitives, but reduces the memory to
3K bits (discussed below), and increases the speed to 43.

3.3. Memory Requirement

Why the memory requirement is decreased in the BPDP
coding? In the serial method, the coefficient is encoded
pass by pass and bit-plane by bit-plane. The associated
variables have to be stored through all the pass and bit-
plane encoding. And the coefficient bits that can be coded
in any pass need be stored for all the 3 passes of one bit-
plane. So for the 64 64 code block, 64 64 5=20K bits
memory is required. However, in our BPDP method, all
passes and all bit-planes are completed in one scan. The
time of keeping the coefficient bits and the associated
variables is shortened greatly, even much less than one
pass. So the memory is reduced correspondingly. The
number of the scan is also reduced to one that saves the
power considerably.

In the BPDP coding, the coefficient and associated
variables are kept till the encoding of the coefficient and
its neighbor coefficients finishes. And the time must
include the interval between the SP and the MP, CP,
which is determined by the primitives. The MRC, ZC, SC
primitives encode merely using information of the 8
neighbors. But the RLC primitive encodes with
information of the adjacent whole columns. So for the
RLC primitive, the interval should be two columns of 8

coefficients. However, if the neighbor coefficients locate
in other strips, more time is needed.

In JPEG2000, a simple “vertical causal” mode is
provided that treats the neighbor coefficients in the
following strip as insignificant coefficients. However the
neighbor coefficients in the previous strip must be
regarded as those in the current strip. Since the neighbor
coefficients are limited among the 8 neighbors, only the
last row of the previous strip is needed. And merely the
and , are needed for encoding. So the memory for the
previous strip is 64 (15 2+1) 2K bits.

In the current strip, the interval between the SP and
the MP, CP is two columns. And the MP and CP (the
RLC primitive) need the information of the previous
column. The SP requires only the information of the first
two coefficients of the following column. So the
information of 4 columns plus two (4 4+2=18)
coefficients is required, the corresponding memory is
18 (15 4+1) 1K bits. So the entire memory for the strip
and the previous strip is 3K bits around.

4. ARCHITECTURE

Based on the BPDP coding, we design the architecture
with pipeline mode. First load the coefficients from the
external memory, and preprocessed. Then send them and
the associated variables , and into a group of shifters.
After shifted, they are transferred to the corresponding
primitives in the bit-plane order except for the SC and
MRC primitive. The SC primitive can use information
from any magnitude bit-plane. The MRC primitive can
use information from any magnitude bit-plane except the
highest magnitude bit-plane. The primitives produce the
pairs of CX and D and organize for each pass.

The preprocessor is a simple OR logic circuit as given
in Equation 1. The group of shifters appears as a
rectangular grid as shown in the left of Figure 2. Its each
column stores a coefficient and each row stores all the
related bits in one bit-plane. The bits in each column are
right shifted with clock cycle. Some specific bit positions
are connected to the corresponding primitives as input or
output.

V - 87

➡ ➡

For the sign bit , two SC primitives are designed for
the SP and CP separately. The input of them can be from
any magnitude bit-plane. Two ZC primitives are
employed for each magnitude bit-plane along with one
RLC primitive except for the highest magnitude bit-plane.
Since the highest magnitude bit-plane has only the CP,
one ZC primitive along with one RLC primitive is enough.
Finally, one MRC primitive is arranged for the MP, and
its input can be from any magnitude bit-plane except the
highest magnitude bit-plane.

5. RESULTS

We test the architecture on the FPGA platform of Altera
Company. It requires about 4K Logic Cells in which the
memory resource is contained. The memory is
implemented with D Flip-Flops rather than the specific
memory block. The four primitives ZC, SC, MRC and
RLC need about 60 Logic Cells, while all primitives in the
BPDP coding require about 900 Logic Cells. That is, the
BPDP coding uses about 15 times primitives of the serial
coding, but it obtains about 43 times speed-up.

The architecture of the BPDP coding is capable of
encoding one coefficient per clock cycle. However the
coding delays still can occur because the sign bit is
encoded and inserted code stream of the magnitude bit
after encoding the magnitude bit M. If the following
arithmetic coding is supposed to be able to encode one
pairs of context and data per cycle, the delay will occur.
The delay can be smoothed with the buffers or be
removed completely with the large buffers. In each pass,
just partial coefficient bits meet the condition and are
encoded. So with the buffers, the delay can be
compensated in the following time without encoding.

Table 2 lists the delay
cycles when encoding test
images, Lena, Goldhill and
Peppers separately. The delay
cycles all happen in the SP. The
delay also may occur in the CP,
but the probability is little. In
Table 2, when using the buffers
with length of 8 pairs of CX
and D, there are hundreds of the
delay cycles. However, when
using the buffers with 16 pairs,
the delay cycles are reduced to
only a few.

6. CONCLUSION

The BPDP coding is very effective technique for
hardware implementation of the fractional bit-plane
coding in JPEG2000. It can accelerate the encoding by a
factor of 15 over the pass parallel coding and the subband
parallel coding, and by a factor of 43 over the serial
coding. And it doesn’t need to increase the memory and
logic circuit in proportional to the speed-up factor like the
subband parallel coding. On the contrary, it reduces the
memory to 3K bits around. It requires about 15 times
logic circuit more than the serial coding for primitives by
proposed partial primitive-parallel technique. Additionally,
all the passes and bit-planes are encoded within one scan,
so that a lot of power is saved.

ACKNOWLEDGEMENT

The work was supported by China 863 (No.
2001AA114141) and 973 (No. G1998030606) plans.

REFERENCES

[1] JPEG 2000 Part 1 020719 (Final Publication Draft), ISO/IEC
JTC1/SC29/WG1 N2678, July, 2002

[2] K. Andra, C. Chakrabarti, and T. Acharya, “A High-
Performance JPEG2000 Architecture,” IEEE Trans. Circuits
Syst. Video Technol, vol. 13, pp. 209-218, March 2003

[3] C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen,
“Analysis and Architecture Design of Block-Coding Engine
for EBCOT in JPEG2000,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, pp. 219-230, March 2003

[4] J. S. Chiang, Y. S. Lin, and C. Y. Hsieh, “Efficient Pass-
Parallel Architecture for EBCOT in JPEG2000,” IEEE
ISCAS-2002, May 2002

[5] Y. Li, R. E. Aly, M. A. Bayoumi, and S. A. Mashali,
“Parallel High-Speed Architecture for EBCOT in
JPEG2000,” IEEE ICASSP-2003, May 2003

Table 2. Delayed cycles with 3 buffers
8 pairs 12 pairs 16 pairs

Lena 318 cycles 36 cycles 5 cycles
Goldhill 167 cycles 12 cycles 0 cycles
Peppers 308 cycles 35 cycles 5 cycles

C1 C2 Cm

P-3 P-3 P-3P-3 P-3 P-3

p p p

P-3 P-3 P-3

p p p p p p

Fig. 2 Shifters and primitives in the dual parallel architecture

ZC1

SC1 SC2

ZC2

ZC1 ZC2

RLC

RLC

p+1

M
R
C

V - 88

➡ ➠

