
AREA EFFICIENT PARALLEL DECODER ARCHITECTURE FOR LONG BCH CODES

Yanni Chen and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455 USA

ABSTRACT

Long BCH codes achieve additional coding gain of around 0.6dB
compared to Reed-Solomon codes with similar code rate used
for long-haul optical communication systems. For our consid-
ered parallel decoder architecture, a novel group matching scheme
is proposed to reduce the overall hardware complexity of both
Chien search and syndrome generator units by 46% for BCH(2047,
1926, 23) code as opposed to only 22% if directly applying the
iterative matching algorithm. The proposed scheme exploits the
substructure sharing within a finite field multiplier (FFM) and
among groups of FFMs.

1. INTRODUCTION

Forward-error correction codes used in long-haul optical com-
munication systems should provide significant coding gains (er-
ror floor can only occur at much lower bit error rate (BER), such
as 10−15) with high code rate and moderate complexity. In In-
ternational Telecommunication Union (ITU-T) G.975, the (255,
239) Reed-Solomon (RS) code has been standardized to resist
burst errors for optical fiber submarine cable systems [1]. With
only 7% overhead, this RS code can not only provide approxi-
mately 5.5dB coding gain at the BER of 10−12 for random errors
correction, but also correct bursts of length up to 64 bit [2].

BCH and RS codes form the core of the most powerful known
algebraic codes and are widely used [3]. From our simulation
using hard decision errors-only decoding under AWGN channel,
additional coding gain of approximately 0.6dB is observed for
binary BCH codes compared to RS codes with similar code rate
and codeword length. Hence, BCH code and its decoder archi-
tecture are of great interest.

To increase the decoding throughput, a parallel decoder is
derived by developing parallel architectures for various building
blocks. Among the three major building blocks in the syndrome-
based BCH decoder, i.e., syndrome generator unit, key equation
solver and the Chien search, the parallel Chien search block is
the most area consuming unit according to [2]. It occupies more
than 65% of logic core for both 10- and 40-Gb/s forward error
correction devices. Therefore, how to develop an area efficient
parallel Chien search circuit for high throughput BCH decoders
is of great interest and is considered in this paper. Then the area
efficient scheme is applied to syndrome generator unit as well.

This paper is organized as follows. In Section 2, the decod-
ing performance of long BCH codes is presented and compared

This work was supported by the Army Research Offi ce under grant
number DA/DAAD19-01-1-0705.

to RS codes. In Section 3, we briefly review the implementation
of three major building blocks of the BCH decoder. Section 4
is devoted to the area efficient schemes to significantly reduce
the complexity of parallel Chien search architecture as well as
syndrome generator units. Section 5 provides the conclusions.

2. HIGH RATE BCH CODES VERSUS
REED-SOLOMON CODES

For the purpose of performance comparison, the BCH and RS
codes with similar code rate as listed in Table 1 are considered.
Here code parameters (n, k, d) represent codeword length, in-
formation length and minimum distance, respectively.

Table 1. Considered high-rate long BCH and RS codes

−5at the BER of 10
SNR (dB)

(n, k, d)
code parameters code

rate

BCH(2047,1926,23) 0.941 6.4

0.938BCH(8191,7684,79) 6.0

0.937

0.937

7.0

6.6

RS(255,239,17)

RS(1023,959,65)

Under AWGN channel using BPSK and hard decision errors-
only decoding, the performance curves for the considered high
rate codes are depicted in Fig. 1.

4 4.5 5 5.5 6 6.5 7 7.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
it

E
rr

or
 R

at
e

RS(255, 239, 17)
RS(1023, 959, 65)
BCH(2047, 1926, 23)
BCH(8191, 7684, 79)

Fig. 1. Performance curves for high rate block codes

V - 730-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

From Fig. 1, it is easily observed that BCH codes achieve
slightly better performance compared to RS codes with simi-
lar code rate and codeword length. An additional coding gain
of 0.6dB at the BER of 10−5 is achieved for BCH(2047, 1926,
23) compared to RS(255, 239, 17) code. Likewise, 0.6dB cod-
ing gain is also seen for BCH(8191, 7684, 79) compared to
RS(1023, 959, 65). Due to its better decoding performance, only
BCH decoder design will be considered in later sections.

3. BCH DECODER ARCHITECTURE

In this section, a parallel BCH decoder is presented.
The syndrome-based BCH decoding consists of three major

steps [3], as depicted in Fig. 2, where R is the hard decision of
received information from noisy channel and D is the decoded
codeword. S and Λ represent syndromes of the received polyno-
mial and error locator polynomial, respectively.

generator
syndrome

solver
equation

key Chien
search

correction
ErrorFIFO Buffer D

R ΛS

Fig. 2. Block diagram of BCH decoder

3.1. Syndrome Generator

For t-error-correcting BCH codes, 2t syndromes of the received
polynomial could be evaluated as follows:

Sj = R(αj) =

n−1X
i=0

Ri(α
j)i (1)

for 1 ≤ j ≤ 2t. If 2t conventional syndrome generator units
shown in Fig. 3(a) are used at the same time independently, n
clock cycles are necessary to complete computing all the 2t syn-
dromes. However, if each syndrome generator unit in Fig. 3(a)
is replaced by a parallel syndrome generator unit with parallel
factor of p depicted in Fig. 3(b), which can process p bits per
clock cycle, only �n/p� clock cycles are sufficient.

It is worth noting that for binary BCH codes, even-indexed
syndromes are the squares of earlier-indexed syndromes, i.e.,
S2j = S2

j . Based on this constraint, actually only t parallel syn-
drome generator units are required to compute the odd-indexed
syndromes, followed by a much simpler field square circuit to
generate those even-indexed syndromes.

3.2. Key Equation Solver

Either Peterson’s or Berlekamp-Massey (BM) algorithm [3] could
be employed to solve the key equations for Λ(x). Inversion-free
BM algorithm and its efficient implementations could be easily
found in the literature [2] [4] and are not considered in this paper.

3.3. Chien Search

Once Λ(x) is found, the decoder searches for error locations by
checking whether Λ(αi) = 0 for 0 ≤ i ≤ (n − 1), which is

αx i2

α

(a)

αx ip

iαx

(p−1)i

Si

x

R0, R1, ... , Rn−1

Rp−1, ... ,

R2 , ... ,

D

i

Si

(b)

D

αx

R1

, ... ,

, ... ,

R0

Fig. 3. Syndrome generator unit (a) Conventional architecture
(b) Parallel architecture with parallel factor of p

normally achieved by Chien search. A conventional serial Chien
search architecture is shown in Fig. 4, and

Λ(αi) =
tX

j=0

Λjα
ij =

tX
j=1

Λjα
ij + 1 (2)

where 0 ≤ i ≤ (n − 1). All the multiplexers select Λ(x) in the
first clock cycle, then select the registered data afterwards.

D α2

Λ2

MUXMUX D αt

Λ t

α

MUX

Λ

i)(Λ

1

α
D

Fig. 4. Conventional Chien search circuit

Since all the n possible locations have to be evaluated for the
Λ(x), it takes n clock cycles to complete the Chien search pro-
cess. To speed up this process, parallel Chien search architecture
that evaluates several locations per clock cycle is essential. Two
different possible architectures with parallel factor p are depicted
in Fig. 5(a) [2] and Fig. 5(b) [4], where Fig. 5(a) actually is just
a direct unfolded version of Fig. 4 with an unfolding factor of p.

As both designs in Fig. 5 can reduce the number of clock
cycles searching for error locations from n down to �n/p�, they
also share similar hardware complexity. Denoting the parallel
factor as p, both designs have the exactly same (p × t) constant
finite field multipliers (FFM), p t-input m-bit finite field adders
(FFA), p m-bit registers and p m-bit multiplexers. However, the
critical path of Fig. 5(a) is (Tmux + p× Tm + Ta) while it is
only (Tmux+Tm+Ta) for Fig. 5(b), where Tmux, Tm and
Ta stand for the critical path of multiplexer, FFM and t-input
m-bit FFA, respectively. Obviously, once the parallel factor p is
greater than 1, much faster clock speed could be achieved for the
design in Fig. 5(b) than that in Fig. 5(a). For example, assuming
Tm is dominant, critical path of Fig. 5(b) is p times shorter.

V - 74

➡ ➡

MUX

D

α

(p−1)

1

(b)

α

D α2

MUX

D

α2

MUX

Λ

(a)

α2

D

Λ2

t

α

tαα

2ppα α

α αt

MUX

D

Λ t

2(p−1)

αt

 tp

αt

α i)(Λ

Λ α)(i2

Λ α)(p i

Λ1

MUX

α

Λ

MUX

Λ2

α(Λ

Λ

D

α(

α t (p−1)

α

p

α((p−1)i)

α2

i)

)i

Λ

Fig. 5. Two different p-parallel Chien search architectures (a)
direct unfolded version (b) equivalent architecture with shorter
critical path

4. COMPLEXITY REDUCTION SCHEME

In this section, a complexity reduction scheme to eliminate the
redundant computations of FFM is discussed in detail.

An optimization algorithm developed in [5] can reduce the
number of XOR gates for constant FFM operations by up to 40%
compared to straightforward implementation. In this paper, a
different algorithm called iterative matching algorithm (IMA) is
attempted to reduce the area. The main idea is to use iterative
sub-structure sharing to eliminate the redundant computations.

4.1. Iterative Matching Algorithm

Consider a constant multiplication in GF (2m) where P is the
product of fixed operand αi, where 1 ≤ i ≤ t for the design in
Fig. 5(a) and 1 ≤ i ≤ (t × p) for the design in Fig. 5(b), and
variable field element B:

P = αiB = αi(b0 + b1α + . . . + bm−1α
m−1) (3)

= b0α
i + b1α

i+1 + . . . + bm−1α
i+m−1

=

0
BBB@

αi
0 αi+1

0 . . . αi+m−1

0

αi
1 αi+1

1 . . . αi+m−1

1

...
...

...
αi

m−1 αi+1

m−1 . . . αi+m−1

m−1

1
CCCA

0
BBB@

b0

b1

...
bm−1

1
CCCA

= [αcoeff]m×m ∗ [b]m×1

Since all the elements αi+j

l in the matrix αcoeff , where 0 ≤
l, j ≤ (m − 1), are simple binary elements and all the addi-
tions are modulo 2 operations, the computational complexity of
FFM can also be defined by the number of XOR gates. Ob-
viously, while computing all the m coefficients of the product
P , p0, p1, . . . , pm−1, all of which are linear combinations of B
coefficients, there are many redundant modulo 2 additions that
allow a reduction of the number of operations.

Different from the algorithm in [5], our iterative matching
algorithm based on [6] consists of following four basic steps.

1. Determine the number of bit-wise matches (nonzero bits)
between all of the rows in the binary matrix αcoeff ;

2. Choose the best match;

3. Eliminate the redundancy from the best match; Return
the remainders to the two rows that contribute the best
match; Append an additional row at the bottom of the
binary matrix to hold the redundancy;

4. Repeat steps 1-3 for all the rows in the binary matrix in-
cluding the appended rows until no improvement is achieved,
i.e., the best match is not greater than 1 bit.

4.2. Implementation Results and Group Matching

By applying the IMA to both Chien search architectures in Fig.
5, the implementation results in terms of number of XOR gates
for BCH(2047, 1926, 23) code is listed in Table 2.

Table 2. Chien search complexity for BCH(2047, 1926, 23) with
parallel factor of 32

in Fig. 5(a)
design

straightforward
implementation

5984 12257

6653

7058

7598

8468

166246080

IMA within each FFM
IMA among 4 FFMs

IMA among 8 FFMs

IMA among 16 FFMs

IMA among 32 FFMs

design
in Fig. 5(b)

−−

−−

−−

−−

saving
area

49%

54%
58%

60%

26%

0%

implementation
methods

In Table 2 IMA is not only explored within individual FFMs,
but also among g FFMs, where g is the group size and 1 < g ≤
p, in the same column (see Fig. 5). These FFMs share the same
multiplicand Λi, where 1 ≤ i ≤ t. This latter case is called
group matching among g FFMs and g binary coefficient matrices
αcoeff of g constant FFMs are combined together to search for
the best match. In other words, the bit-wise matches are searched
in a coefficient matrix with size of gm × m instead of m × m.
Note that group matching is solely possible for the design in Fig.
5(b), which provides another advantage in addition to the lower
critical path compared to that in Fig. 5(a).

If implemented in a straightforward manner, the design in
Fig. 5(a) has much smaller complexity than that in Fig. 5(b) sim-
ply because in the latter case the constant FFMs have more pow-
ers of α with higher Hamming weight as multiplicands. How-
ever, as the group matching factor g is increased, the number of

V - 75

➡ ➡

XOR gates is reduced significantly for the design in Fig. 5(b).
When g is equal to the parallel factor 32, compared to the straight-
forward implementation, the area saving is 60% as opposed to
merely 26% saving obtained if the iterative matching algorithm
is applied to individual FFMs. Consequently, the complexity of
Fig. 5(b) is very close to that of Fig. 5(a). Furthermore, the
former design retains its shorter critical path advantage.

For longer BCH(8191, 7684, 79) code (see Table 3), the
complexity for the design in Fig. 5(a) grows very quickly as its
error correcting capability t is increased to 39. However, com-
plexity increases only slightly for the design in Fig. 5(b). More-
over, the area saving for the design in Fig. 5(b) after employ-
ing group matching is more significant compared to BCH(2047,
1926, 23) code. In fact its number of XOR gates is already
smaller than that of the design in Fig. 5(a) even when the group
matching is carried out among 4 FFMs. While the group match-
ing factor g is increased to 32, the complexity of design in Fig.
5(b) is approximately 30% less than that of the design in Fig.
5(a). This implies that for longer BCH codes, lower complexity
and faster design could be achieved by applying the proposed
group matching scheme.

Table 3. Chien search complexity for BCH(8191, 7684, 79) with
parallel factor of 32

in Fig. 5(a)
design

straightforward
implementation

63997

102277

IMA within each FFM
IMA among 4 FFMs

IMA among 8 FFMs

IMA among 16 FFMs

IMA among 32 FFMs

design
in Fig. 5(b)

−−

−−

−−

−−

saving
area

55%
58%

62%

37%

0%

implementation
methods

51029

46329

42534

39365

50%

89664

57504

4.3. Apply Group Matching to Both Chien Search and Syn-
drome Generator Units

In a similar manner, the group matching scheme described above
can also be applied for the constant FFMs in the feedback loop
of syndrome generator units in Fig. 3(b) to reduce the number of
XOR gates. Since one of the multiplicands in the feed-forward
FFMs is simple a binary number, no multiplication is performed
and hence no complexity reduction is needed for those FFMs.
The combined complexity of Chien search and syndrome gener-
ator units is listed in Table 4.

In Table 4 the results for group matching are obtained by ap-
plying the IMA among 32 FFMs for Chien search and individ-
ual matching for parallel syndrome generator units. From Table
4 we can observe that the complexity of parallel syndrome gen-
erator units is dominated by the p-input m-bit FFAs instead of
FFM in the feedback loop, which explains why the area saving
is small for syndrome part. However, for BCH(2047, 1926, 23)
code, 46% area is saved for the combined complexity. This is a
significant improvement compared to the case of directly apply-
ing IMA, which only saves 22% XOR gates. Similar results are
observed for BCH(8191, 7684, 79) code.

Table 4. Combined complexity for both Chien search and syn-
drome units with parallel factor of 32

implementation

Chien
Search Syndrome Combined

straightforward 16624 4372 20996

after individual
matching

area saving

after group
matching

area saving

12257 4181 16438

26% 4% 22%

6653 4181 10834

60% 4% 46%

implementation
methods

code
parameters

BCH
(2047, 1926, 23)

BCH

(8191, 7684, 79)

straightforward
implementation
after individual

matching
area saving

after group
matching
area saving

102277 18933

6% 53%

121210

37%

63997 17733 81730

33%6%

1773339365 57098

62%

5. CONCLUSIONS

In this paper, to reduce the area consumption of binary high
throughput BCH decoder, a novel complexity reduction scheme
is proposed. As a result, the parallel decoder architecture can
reduce the number of XOR gates by roughly 50% compared
to the original design. It also shows a significant improvement
to the previous results where the iterative matching algorithm
was applied within individual FFMs. Consequently, an area-
efficient design with very short critical path is obtained. All the
techniques presented in this paper can be easily extended to RS
codes.

6. REFERENCES

[1] “Forward error correction for submarine systems,” Telecom-
munication standardization section, International Telecom-
munication Union, G.975, 1996.

[2] L. Song, M.-L. Yu, and M. S. Shaffer, “10- and 40-Gb/s for-
ward error correction devices for optical communications,”
IEEE J. Solid-State Circuits, vol. 37, pp. 1565-1573, Nov.
2002.

[3] S. B. Wicker, Error control systems for digital communi-
cation and storage, Upper saddle river: NJ: Prentice-Hall,
1995.

[4] H. C. Chang, C. B. Shung, and C. Y. Lee, “A Reed-Solomon
Product-Code (RS-PC) decoder chip for DVD applications,”
IEEE J. Solid State Circuits, vol. 36, pp. 229-238, Feb. 2001.

[5] C. Paar, “Optimized arithmetic for Reed-Solomon en-
coders,” IEEE Proc. of ISIT’97, pp. 250, 1997.

[6] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan,
“Multiple constant multiplications: efficient and versatile
framework and algorithms for exploring common subex-
pression elimination,” IEEE Trans. on Computer-Aided De-
sign, vol. 15, no. 2, pp. 151-165, Feb. 1996.

V - 76

➡ ➠

