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ABSTRACT

A growing number of performance-critical DSP application use
the discrete wavelet transform (DWT), thus prompting the need for
highly efficient DWT software implementations. Unfortunately,
the rapid evolution of computing platforms and compiler technol-
ogy makes carefully hand-tuned code obsolete almost as fast as it
is written. In this paper we describe our work on the automatic
generation of DWT implementations that are tuned to a given plat-
form. Our approach captures the various DWT algorithms in a
concise mathematical framework that enables the integration of
DWTs into the SPIRAL code generation system. Experiments
show the quality of our automatically generated code and provide
interesting insights; for example, the fastest code differs between
platforms and is usually based on a non-obvious combination of
DWT algorithms.

1. INTRODUCTION

DSP applications typically require high-performance implemen-
tations. Software developers usually fine-tune their implementa-
tions to utilize the specific features of the target platform. How-
ever, hand-coding is tedious and time-consuming, and it requires
expert knowledge of both algorithms and the computer architec-
ture. Furthermore, the ever-changing hardware and compiler tech-
nologies require frequent re-implementation. This problem has led
to a growing interest in automatic generation and tuning of code.
There have been several efforts in this direction, mainly involving
basic linear algebra and DSP kernels. For example, the SPIRAL
system automatically generates platform-adapted code for several
DSP transforms [1, 2]. Apart from common DSP transforms, in-
creasingly more DSP applications use wavelet transforms; exam-
ples include compression, communications, and numerical anal-
ysis, just to name a few. Automatic code tuning for fast wavelet
kernels is hence an important problem still waiting to be addressed.

In this paper we focus on the automatic generation of high-
performance software implementations for the class of discrete
wavelet transforms (DWTs). Previously, we extended the SPIRAL
framework to generate efficient code for FIR filters [3], which
serves as a foundation of the present work. In this paper we re-
formulate existing DWT algorithms into the mathematical form
required for integration into the SPIRAL system, which we use to
enable automatic code generation. Experimental results show the
quality of our generated code and bring a few insights: the code
depends on the underlying platform, and the choice of the algo-
rithm depends on the size of the transform.

This work was supported by NSF awards 0234293 and 0310941.

2. SPIRAL

The SPIRAL system generates optimized platform-adapted imple-
mentations for a variety of important DSP transforms. SPIRAL’s
framework is based on four key concepts: transforms, rules, rule
trees, and formulas.

Transforms. A transform of a finite discrete-time sequence is
computed as a matrix-vector product. The transform is represented
as a matrix, typically parameterized by its size. For example, the
discrete Fourier transform (DFT) of size n is given by

DFTn = [ωk�
n ]k,�=0,...,n−1, ωn = e−2πj/n. (1)

Rules. Breakdown rules, or simply rules, structurally decom-
pose a transform into other transforms and/or primitive matrices.
Rules are represented by a set of mathematical constructs such as
the Kronecker or the tensor product A⊗B = [ak,� · B] , where A =
[ak,�] and the direct sum of matrices A ⊕ B = [ A

B ], and with
primitive symbols representing matrices that are not transforms,
such as the stride permutation

Lrs
r : j ← j · r mod (rs − 1). (2)

For example, we can write the rule for the class of mixed radix
Cooley-Tukey algorithms for a DFT of size n = pq [4],

DFTn = (DFTp ⊗ Iq)Tn
q (Ip ⊗DFTq) Ln

p , n = p · q, (3)

where In is the n × n identity matrix, Tn
q is a diagonal matrix of

complex roots of unity, and Ln
p is a stride permutation [4].

Rule trees. Rules such as (3) are applied recursively and com-
bined with other rules as many times as possible. This gives rise
to a tree structure called a rule tree. When no more rules are appli-
cable then the base case is reached and the tree is said to be fully
expanded. An algorithm in SPIRAL is uniquely represented by a
fully expanded rule tree.

Formulas. Formulas are mathematical expressions that repre-
sent rule trees. A formula is obtained by applying rules to a trans-
form by replacing the transforms in formulas by the right-hand
side of the applicable rules. We can, thus, expand (3) as

DFT8 = (DFT2 ⊗ I4)T8
4(

(DFT2 ⊗ I2)T4
2 (I2 ⊗DFT2) L2

4

)
L2

8,
(4)

Fully expanded formulas uniquely represent fully expanded rule
trees and the corresponding algorithms.

SPIRAL system. The architecture of SPIRAL is displayed in
Figure 1. For a given transform, the formula generator generates
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Fig. 1. The architecture of SPIRAL.

one or several out of many possible formulas, or algorithms, in the
mathematical domain-specific language called SPL. The formula
translator parses the SPL program and recursively matches the for-
mulas with the set of predefined translation templates, which are
combined to produce an actual C program for the formula. At this
stage, various implementation choices are provided, such as the
degree of loop unrolling. The produced code is measured and the
runtime is used by the search engine to control the generation of
new algorithms in the formula generator and possibly different im-
plementation options in the formula translator. Thus, for a given
transform, the search engine navigates through the space of pos-
sible algorithms and their implementations, and evaluates them to
find the optimized solution suited to the target platform. SPIRAL
employs various search techniques, including dynamic program-
ming, random search, and evolutionary search [5].

Our goal is to capture DWTs in SPIRAL’s framework to en-
able automatic code generation.

3. DWT RULES AND ALGORITHMS

To capture DWT algorithms in SPIRAL’s rule framework, we first
need the FIR filter transform Fn(h) as a building block , where
n is the number of inputs and h is the column vector of filter co-
efficients [3]. Second, we need two new mathematical operators,
already introduced in [3], namely the row overlapped direct sum
and the column overlapped direct sum of matrices A and B, re-
spectively defined by

A⊕kB =

⎡
⎢⎢⎢⎢⎢⎢⎣

A

B

⎤
⎥⎥⎥⎥⎥⎥⎦

, A⊕kB =

⎡
⎢⎢⎢⎢⎢⎣

A

B

⎤
⎥⎥⎥⎥⎥⎦ , (5)

where the parameter k provides the number of overlapping columns
or rows, respectively. In particular, A⊕0 B = A⊕0 B = A⊕B.
Also, (A ⊕k B)T = AT ⊕k BT .

Further, we define the row overlapped tensor product by

Is ⊗kA = A ⊕k A ⊕k · · · ⊕k A︸ ︷︷ ︸
s-fold

, (6)

and the column overlapped tensor product analogously.

DWT definition. A two-band discrete-time wavelet transform
(DWT) of the finite sequence {xn} of length N is defined using
the following recursive relations, also known as Mallat’s algorithm
for the DWT [6]:

cj−1,n =
∑
m

hm−2n cj, m, dj−1,n =
∑
m

gm−2n cj, m, (7)

where j = 1, . . . , J is the scale or the level of the decomposition
and n = 0, . . . , N − 1 is the shift.

The starting coefficients at the highest level J = log2 N rep-
resent the input sequence, i.e., {xn} = {cJ,n}, and the output of
the DWT is {yn} = {{dJ−1,k}, {dJ−2,k}, . . . , {d0,k}, {c0,k}}.
The coefficients {cj,n} and {dj,n} are known as the scaling and
the wavelet coefficients at scale j, respectively, whereas {hn} and
{gn} are the scaling and the wavelet function coefficients. The
relation in (7) can be seen as the filter bank shown in Figure 2.

We capture the Mallat’s algorithm in the following rule

DWTn(h,g) =
(
DWTn/2(h,g) ⊕ In/2

) · (↓ 2n) ·(
FN/2(h) ⊕N+k−1 FN/2(g)

) · E∗
n,l,r,

where (↓ 2n) = (In ⊕n 0n) L2n
2 is the downsample operator,

{h0, . . . , hk−1} are scaling function coefficients, {g0, . . . , gk−1}
are wavelet function coefficients from (7), and E∗

n,l,r is a type “∗”
boundary extension operator that extends the input by l points to
the left and r points to the right. The DWT is decomposed into
a smaller DWT and two FIR filter transforms. The downsampler
throws away half of the results, so we fuse it into the filters to
obtain fused Mallat rule.

DWTn(h,g) =
(
DWTn/2(h,g) ⊕ In/2

) · Hn(h,g) · E∗
n,l,r,

(8)
where the matrix Hn represents one stage of the wavelet filter bank

Hn(h,g) =

[
In/2 ⊗k−2[ h0 h1 . . . hk−1 ]
In/2 ⊗k−2[ g0 g1 . . . gk−1 ]

]
. (9)

Downsampling can be done before filtering to save operations.
This is achieved through the polyphase representation. The signal
is split into even and odd samples. Each sequence is filtered by
subsampled filters, which results in the reduction of arithmetic cost
by two (see Figure 2).
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Fig. 2. Filter bank and its polyphase equivalent.
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The polyphase matrix consists of four filters, the even and the
odd subsampled versions of the lowpass and the highpass filters.

P (z−1) =

[
he(z

−1) ho(z
−1)

ge(z
−1) go(z

−1)

]
, (10)

The polyphase decomposition is represented by the following rule

Hn(h,g) =
[
(FT

n/2(ho) ⊕n/2 FT
n/2(he))⊕n+k−2

(FT
n/2(go) ⊕n/2 FT

n/2(ge))
]
· Ln+k−2

2

(11)

he = [h0, h2, . . . , hk−2]
T ho = [h1, h3, . . . , hk−1]

T

ge = [g0, g2, . . . , gk−2]
T go = [g1, g3, . . . , gk−1]

T

The polyphase rule is a gateway to implementations in the fre-
quency domain through the DFT-based rules for the four FIR filter
transforms [3].

Arithmetic cost can be further reduced by using the lifting
scheme [7]. The method is based on the factorization of the polyphase
matrix into the product of upper and lower triangular polyphase
matrices with short filters si(z) and ti(z). These matrices are
known as the primal (predict) and the dual (update) lifting steps.
The lifting scheme reduces the cost for computing the polyphase
matrix asymptotically by 50%. It is used, for example, in JPEG2000
standard.

We define a rule that captures this decomposition:

Hn(h,g) = (K · In/2 ⊕1/K · In/2)(
(In/2 ⊕n/2F T

n/2(si) ⊕n+|si| In/2

)
︸ ︷︷ ︸

Si

· · ·
(
In/2 ⊕n+|t0|(F

T
n/2(t0) ⊕n/2 In/2)

)
︸ ︷︷ ︸

T0

Ln+k−2
2 ,

(12)
where si and ti represent the primal and dual filter coefficients
obtained by decomposing h and g using the Euclidean algorithm,
and |x| is the length of x.

DWTn(h,g)

Fn/2(si)

Lifting

DWTn/2(h,g) Fn/2(ti)
........

T(si1) T(sil/b)

Blocking

Fn/2(t0).....

Expanded-Circulant

Cn/2+l-1(t0)

.....

.....

.....

Fig. 3. A rule tree generated from DWT and FIR rules

Combined application of rules (8)-(12), together with the rules
for FIR filters, provide a very large space of different DWT algo-
rithms that SPIRAL uses to search for an optimized implemen-
tation. An example is the algorithm represented by the rule tree
shown in Figure 3. The lifting rule (12) is applied to decompose
Hn into smaller filters. Different lifting step filters are in turn de-
composed either into blocks using the blocking rule or into circu-
lant matrices that are decomposed further (e.g, using DFT-based
rules) [3].
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Fig. 5. Comparison of best found implementations using 3 meth-
ods for Daubechies D4 (top) and D9−7 (bottom).

4. EXPERIMENTAL RESULTS

We included the framework for DWTs in SPIRAL and performed
experiments with a large number of generated algorithms across
two platforms. We designed the experiments so as to investigate
the efficiency of certain types of algorithms and their implemen-
tations on different machines. Besides the algorithmic degrees of
freedom, we included the degree of loop unrolling and code block-
ing strategies in the search.

We ran experiments on two computer platforms: Intel Xeon
(1.7 GHz, Linux) and AMD Athlon XP (2.1 GHz, Linux), re-
ferred to as Xeon and Athlon, respectively, using gcc 3.2.1 un-
der Linux with compiler flags set to “–O6 –fomit-frame-pointer
–malign-double –fstrict-aliasing –mcpu=pentiumpro”. We consid-
ered single-level DWTs with orthogonal Daubechies D4 and D30

wavelets, and the biorthogonal D9−7 used in the JPEG2000 stan-
dard [8], all with symmetric signal extensions. SPIRAL automat-
ically generated all algorithms and the corresponding code, both
found by the dynamic programming search provided by SPIRAL.

We compared three classes of algorithms determined by the
choice of the top-level rule (8), (11), or (12). For each class SPI-
RAL generates and searches a large number of algorithms. Based
on the choice of the top-level rule, we have:
• Direct methods. We use the Fused-Mallat rule (8) to compute

Hn(h,g). The matrix Hn(h,g) is implemented using the best
found blocking strategy for a matrix-vector multiplication.

• Polyphase methods. We use the Polyphase rule (11) to decom-
pose Hn(h,g) into four shorter FIR filters. This method pro-
vides a way to implement Hn(h,g) in the frequency domain.
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Fig. 4. Comparison of best found implementations for Daubechies D30 on Xeon (left) and Athlon (center). Flop/s performance for different
DWTs on Xeon (right).

• Lifting scheme. The Rule (12) is used to decompose Hn(h,g)
into lifting steps, which reduces the arithmetic cost.

An example of the lifting scheme class algorithm is the one shown
in Figure 3.

Different top-level methods (rules). In the first experiment,
we generated code for the DWT using the D4 and D9−7 wavelets
for input sizes 21 ≤ N ≤ 220. The runtimes in Figure 5 are
shown relative to Mallat’s method (higher is worse), which serves
as baseline. We observe that for D4 the lifting method is inferior
for all sizes, even though its arithmetic cost is only about 65% of
the direct methods. A longer critical path and more involved data
access patterns of the lifting scheme are the likely reasons for this
discrepancy. For D9−7, the lifting proves to be better for the range
24 ≤ N ≤ 213 offering a speed-up of up to 20%. For smaller
sizes there is an extension overhead since the input size is smaller
than the filter length, the case rarely found in practice. For sizes
above 213, in both cases, the temporary vectors used in the lifting
scheme deteriorate cache performance. For both wavelets, there is
no advantage of using polyphase methods since the filter lengths
are too short for the frequency-based techniques to be efficient [3].

Different platforms. In the second experiment, we generated
code for D30 wavelets for two different platforms. Figure 4 shows
again the relative runtimes obtained for the three methods on Xeon
(left) and Athlon (center). We emphasize the difference in the two
graphs. The lifting scheme is preferable for sizes 27 to 213 on
Xeon, and from 26 to 211 on Athlon. The difference arises from
considerably different architectures and compiler behavior on the
two platforms. This shows that the performance is not portable
and that the search is necessary to automatically adjust implemen-
tations to the new environment.

Performance. In the third experiment, run on Xeon, we mea-
sured the percentage of the theoretical peak performance for our
generated code; the performance is measured in floating point op-
erations per second (flops/s). The right plot in Figure 4 shows the
result for the direct methods for three wavelet transforms imple-
mented on Xeon. The performance is highest (about 75% of the
peak performance) for the longest wavelet D30 and does not dete-
riorate for large sizes. In contrast, the short wavelets experience a
performance drop at the cache boundary, more pronounced for the
shortest D4 wavelet. It is interesting to note that the lifting scheme
has lower flops/s (not shown) but also lower computational cost,
which may lead to a faster runtime.

Conclusion. We designed a new framework that efficiently
captures the existing DWT algorithms in a concise notation suit-

able for machine representation and code generation, and inte-
grated it into SPIRAL. We used SPIRAL to automatically gen-
erate high quality code that is adapted to the target platform. The
best found code 1) is not obvious for a human programmer since
it involves different algorithmic methods and variable degrees of
code blocking and unrolling that are platform dependent; 2) can
not be reliably predicted from the arithmetic cost and the flops/s
performance; and 3) is considerably different across different plat-
forms. It is therefore very hard to draw conclusions that apply in
general to different applications and platforms, which justifies our
approach of automatic search for the best suited solution.
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