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ABSTRACT 

 
Adaptive filtering is a widely used technique in active 
noise control (ANC). In order to make the adaptive filter 
in an FXLMS ANC system stable, the reference signal 
must pass through an estimation filter whose phase 
response is within ±90° of the phase of the secondary path. 
In this paper, we study the quantization effects on the filter 
phase response and the relationship between the phase 
response and the location of the zeros and poles. In 
addition, we propose a filter structure and nonuniform 
quantization method in which we quantize the filter 
coefficients so they each contain a small number of 
nonzero bits based on the distance of the zeros/poles to the 
unit circle to guarantee that the ±90° allowable phase 
deviation is met — greatly reducing the implementation 
cost. We combine these ideas with that of multiplierless 
implementations of adaptive FIR filters to realize an 
efficient active noise control using field programmable 
gate arrays or other digital hardware. 
  

1. INTRODUCTION 
 
Two types of acoustic noise exist in the environment: 
broadband noise and narrowband noise. Active noise 
control (ANC) techniques can successfully be used to 
reduce both the narrowband and broadband noise that 
exists in many applications. The filtered-x LMS (FXLMS) 
and adjoint LMS are two widely applied techniques [1].  

The FXLMS algorithm is illustrated in Fig. 1, where  
 

 
Fig. 1. FXLMS active noise canceller 

 
the output ( )y n  is: 
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where ( )iw n is the ith coefficient of  the adaptive FIR filter 

( )W z  at time n, and ( )x n  is the reference signal vector at 

time n. The error signal is 
   ( ) ( ) '( ) ( ) ( ) * ( )e n d n y n d n s n y n= − = −          (2) 

where ( )s n is the impulse response of the secondary-path 

( )S z  at time n. Then the FXLMS update algorithm is 

 ( 1) ( ) * ( ) * '( )w n w n e n x nµ+ = −  (3)  

where µ  is the step size of the algorithm. Therefore, the 
input vector ( )x n  is filtered by ( )S z  before updating the 

weight vector. However, in practical applications, ( )S z  is 

unknown and must be estimated by the filter ˆ( )S z  

 ˆ'( ) ( ) * ( )x n s n x n=  (4) 

The main idea behind the filtered-x LMS algorithm is to 
keep the reference signal ( )x n  and the error signal ( )e n  

aligned in time. In order to do that, the reference signal 
must be filtered by a filter ˆ ( )S z  that should have the same 
phase response as the secondary path ( )S z . According to 

the research in [2], the filtered-x LMS algorithm is robust 
in the sense that it will converge when there is no more 
than 90° of phase error between ˆ( )S z  and the secondary 

path ( )S z  at all frequencies. Based on this knowledge, we 

could relax the precision constraints on the adaptive filter. 
Which means we could use only limited bits to quantize 
ˆ( )S z , and still have it converge with sufficient precision to 

work in the ANC problem. Thus, the method’s robustness 
can be exploited to produce a low complexity 
implementation.  

In Section 2, we describe the quantization effects on 
the phase response of the filter and their relationship to the 
pole and zero locations. Then, we propose a quantization 
architecture in Section 3. Multiplierless implementation of 
ANC is discussed in Section 4.  Simulations are given in 
Section 5. Conclusions are presented in Section 6.   
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2. QUANTIZATION EFFECTS ON PHASE 
RESPONSE 

 
Quantization is one of the most important issues when 
implementing a filter using VLSI hardware. The definition 
of the quantization function affects not only the hardware 
requirements, but also the performance of the filter. By 
identifying a good quantization approach, we can 
significantly reduce hardware complexity. 

For our ANC application, we need to find a 
quantization technique that affects phase response as little 
as possible. Consequently, we must determine the 
relationship between the phase errors and the quantization 
functions. For example, consider an FIR filter and its 
coefficients quantized version 
 1 2

0 1 2( ) N

NH z a a z a z a z− − −= + + +L  (5) 

 1 2

0 1 2
ˆ ˆ ˆ ˆ ˆ( ) N

NH z a a z a z a z− − −= + + +L  (6) 

where ( )H z  is the infinite precision transfer function. 

Quantization of the filter coefficients results in a new 
transfer function ˆ ( )H z , related to ( )H z  via the 

quantization function ( )Q z  

  ˆ( ) ( ) ( )H z H z Q z= ⋅  (7) 

 ˆ( ) ( ) ( )j j jH e H e Q eω ω ω= ⋅  (8) 

so, 
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where ( ) arg{ ( )}jQ e ωφ ω =  is the phase response of  ( )Q z , 

and ( )jQ e ω  is the magnitude response of  ( )Q z ; 

1 2
, ,

N
k k k  are zeros of FIR filters. 
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Fig. 2 shows that the phase error for a filter is related to 
zero locations. The quantization phase error is equal to the 
sum of the 

i
θ . Similar results hold for IIR filters [3], [4]. 

The closer the poles and zeros are to the unit circle, the 
bigger the 

i
θ , and thus the phase error. This relationship 

leads us to propose a cascade form filter structure with 
each section characterized by either a first-order or a 
second-order transfer function, which is less sensitive to 
the quantization: 
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Fig. 2. The relations between quantization error 
1
θ and the 

poles and zeros locations 
 
For the first-order part, zeros are just equal to nα− ; for the 

second-order part, zeros are equal to 
2

1 1 2
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β β β
β

− ± −
= . When 1nα =  or 

1 1
2

mβ
= and 2 1mβ = , the zeros will be on the unit circle. 

Consequently, our quantization rule is to use more bits 
to represent the coefficients when their zeros or poles are 
near unit circle; otherwise, when the zeros and poles are 
far from the unit circle, we use less bits for the coefficient 
to reduce the hardware complexity. 
 

3. QUANTIZATION ARCHITECTURES 
 

From our previous discussion, we know that the closer the 
poles and zeros are to the unit circle, the bigger the phase 
error is. Based on this understanding, we propose a 
quantization function that quantizes each coefficient value 
to limited combinations of powers-of-two, such as the sum 
or difference of two or three powers-of-two, which leads 
to an efficient multiplierless approach. Fig. 3 shows the 
corresponding implementation. 

In binary arithmetic, multiplication by a power-of-two 
is implemented in hardware structures simply by a shift 
operation, which can be implemented by properly “wiring” 
the circuit. Thus, we can realize the filter coefficients 
using a few adders/subtractors along with the routing 
required for shifting [5], [6], [7]. In our case, based on the 
distance to the unit circle, we separate the coefficient to 
four intervals: 
Interval I: 

1 1

2 2
n

α− ≤ ≤ ,        
2

1 1

4 4
m

β− ≤ ≤      and     
1

1 1
m

β− ≤ ≤   

For this interval the zeros are relatively far from the unit 
circle, so we use only two power-of-two bits to represent 
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them. This implementation is shown in Fig. 3(a). 
Interval II: 
1 1

1
2 2

n
α< ≤ ,       

2

1 1
2

4 4
m

β< ≤       and    
1

1 3
m

β< ≤ . 

Phase error is more sensitive to coefficients in this 
interval, so we use three power-of-two bits to represent 
them. This implementation is shown in Fig. 3(b). 
Interval III: 

1
1 3

2
n

α< ≤ ,  
2

1
2 9

4
m

β< ≤   and 
1

3 6
m

β< ≤ . 

As in Interval I, the zeros are relatively far from the unit 
circle, so we use two power-of-two bits to implement these 
coefficients. 
Interval IV: 
The larger coefficients outside the ranges of Intervals I, II, 
and III, are far from the unit circle, and so the effect of 
quantization of phase is small enough that a single bit can 
be used to represent the coefficient! 
 

 
Fig.3.a.Quantized coefficients with two power-of-two bits 
        b.Quantized coefficients with three power-of-two bits 
 

Here we quantize a second order sub-system 
1 2

1 21 m mz zβ β− −+ +  based on above method. The absolute 

value of the maximum phase error histogram is given in 
Fig. 4. Note that in the calculation, we ignore the points 
very close to the unit circle, because for an FIR system this 
means that the magnitude is very small and for an IIR 
system these points yield unstable systems. We can see 
that most of the large phase errors are within 10º. Thus, 
the chances are very slight that we can accumulate phase 
errors larger than 90º for a high order adaptive filter using 
the cascade form implementation. 

 
4. MULTIPLIERLESS IMPLEMENTATION OF 

FX-LMS ANC 
 

To implement FX-LMS for ANC, we first need to 
implement the Least Mean Square (LMS) adaptive FIR 
filter. Since LMS requires adaptation of the filter 
coefficients, implementations typically require multiplier 
circuits that can multiply different values. In earlier work 

[8], we developed a multiplierless adaptive FIR filter by 
using a limited number of nonzero canonical signed digit 
(CSD) bits to create a multiplier circuit using shifts and 
adds. We also modified the adaptation algorithm so that it 
could be performed using a single shift. To implement the 
FXLMS ANC, we need two adaptation processes. One is 

( )w z , which is required for system identification, and the 

other is ˆ( )S z , which is used to estimate secondary path 

( )S z . A detailed diagram showing the implementation of 

FXLMS ANC is shown in Fig. 5. 
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Fig. 4. The histogram of the maximum absolute phase 

error 
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Fig. 5. Block diagram for Nth -order FX-LMS 

 
5. SIMULATION RESULT 

 

Consider the 12th order IIR filter ˆ( )S z  that is used to 

estimate the secondary path ( )S z  in an ANC system with 

coefficients: 

 

2 4 61 1.0347 2.5244 1.5362
2 4 61 0.8254 2.6216 1.3456

8 10 121.8239 0.5401 0.3771
8 10 122.1235 0.5401 0.5314

z z z

z z z

z z z

z z z

− − −− + −
− − −+ + +

− − −+ − +
− − −+ + +
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Fig. 6 shows the results of implementing this filter 
without quantization and also using three different 
quantization methods: quantization to the 5 most 
significant digits, quantization of direct form to 3 nonzero 
CSD digits, and our quantization algorithm. As shown in 
Fig. 6, our method works quite well. Next, we apply these 
quantized filters in the ANC FX-LMS algorithm shown in 
Fig. 5. The filter resulting from our quantization method is 
stable and removes significant amounts of noise, while the 
other two quantization methods actually diverge, (see Fig. 
7). 
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Fig. 6. Comparison of filter magnitude and phase 
response of three different quantization methods. 

 
6. CONCLUSION 

 
For a long time, many researchers have considered the 
effect of quantization on magnitude, with little 
consideration given to phase errors. We described the 
effect of quantization on phase response and its 
application to ANC implementation using FX-LMS. By 
choosing a quantization function that varies depending on 
the location of the poles and zeros, we can reduce the 
hardware required. Our quantization method provides 
more bits for those coefficients that have a greater effect 
on the phase error (i.e. poles and zeros that are close to the 
unit circle). Our method allows us to reduce the phase 
error while reducing the hardware complexity. We 
incorporate this approach into the implementation of a 
multiplierless FX-LMS active noise controller. The 

reduced complexity makes FX-LMS more desirable for 
ANC implementations. 
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Fig.7. PSD result of the ANC system using our 
quantization method
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