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ABSTRACT
Similar to programmable devices such as processors or mi-
cro controllers also reconfigurable logic devices can be built
as software, by programming the configuration of the de-
vice. In this paper, we present an overview of constraints
which have to be considered when mapping applications to
coarse-grained reconfigurable architectures.
The application areas of most of these architectures address-
ing computational-intensive algorithms like video and audio
processing or wireless communication. Therefore, recon-
figurable arrays are in direct competition with DSP proces-
sors which are traditionally used for digital signal process-
ing. Hence, existing mapping methodologies are closely re-
lated to approaches from the DSP world. They try to em-
ploy pipelining and temporal partitioning but they do not
exploit the full parallelism of a given algorithm and the
computational potential of typically 2-dimensional arrays.
We present a first case study for mapping regular algorithms
onto reconfigurable arrays by using our design methodology
which is characterized by loop parallelization in the poly-
tope model. The case study shows that our regular mapping
methodology may lead to highly efficient implementations
taking the constraints of the architecture into account.

1. INTRODUCTION
These days, semiconductor technology allows implement-
ing arrays of hundreds of 32-bit microprocessors on a single
die and more. Computationally intensive applications like
video and image processing in consumer electronics and the
rapidly evolving market of mobile and personal digital de-
vices are the driving forces in this technology. The increas-
ing amount of functionality and adaptability in these devices
has lead to a growing consideration of coarse-grained re-
configurable architectures which provide the flexibility of
software combined with the performance of hardware. But,
on the other hand, there is the dilemma of not being able
to focus the hardware complexity of such devices because
of a lack of mapping tools. Hence, parallelization tech-
niques and compilers will be of utmost importance in order
to map computationally intensive algorithms efficiently to
these coarse-grained reconfigurable arrays. In this context,
our paper deals with the specific problem of mapping a cer-
tain class of regular nested loop programs onto a dedicated
processor array. This work can be classified to the area of
loop parallelization in the polytope model [1].
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The rest of the paper is structured as follows. In Section 2, a
brief survey of previous work on reconfigurable computing
is presented. Section 3 introduces our design flow. In Sec-
tion 4, we give an overview which architecture constraints
have to be taken into account during compilation of algo-
rithms onto coarse-grained reconfigurable architectures. Af-
terwards in Section 5, a case study of our mapping method-
ology is given and results are discussed. Future work and
concluding remarks are presented in Section 6.

2. RELATED WORK
Reconfigurable architectures span a wide range of abstrac-
tion levels from fine-grained LUT based reconfigurable logic
devices, like FPGAs, to distributed and hierarchical systems
with heterogeneous reconfigurable components. A taxon-
omy of reconfigurable logic devices is given in [2]. In order
to handle the routing area overhead of FPGAs and herewith
configurations’ size another approach are coarse-grained re-
configurable architectures. Several academic coarse-grained
reconfigurable arrays have been developed [3] and, since
a while, more and more commercial are being developed
like the D-Fabrix [4], the DRP from NEC [5], or the PACT
XPP [6].
Both fine- and coarse-grained architectures have a lack of
programmability in common, due to their own paradigms
which are totally different from the von Neumann’s. To
overcome this obstacle some research work exists. For in-
stance, the Nimble framework [7] for compiling applica-
tions specified in C to an FPGA. A regular mapping method-
ology for mapping nested loop programs onto FPGAs is
also presented in the work of [8] and will be later described
in this paper.
Only few research work is published which deals with the
compilation to coarse-grained reconfigurable architectures.
The authors in [9] describe a compiler framework to analyze
SA-C programs, perform optimizations, and automatically
map the application onto the MorphoSys architecture [10],
a row-parallel or column-parallel SIMD architecture. This
approach is limited since the order of the synthesis is prede-
fined by the loop order and no data dependencies between
iterations are allowed.
Another approach for mapping loops onto coarse-grained
reconfigurable architectures is presented by Dutt et al. in
[11]. Outstanding in their compilation flow is the target
architecture, the DRAA, a generic reconfigurable architec-
ture template which can represent a wide range of coarse-
grained reconfigurable arrays. The mapping technique itself
is based on loop pipelining and partitioning of the program
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tree into clusters which can be placed on a line of the array.
In this paper we present a case study based on mapping of
regular algorithms and loop parallelization in the polytope
model. The advantage of this approach is the exploitation of
full data parallelism and that an efficient algorithm mapping
in terms of space and time may be directly derived from the
polytope model.

3. DESIGN FLOW FOR REGULAR MAPPING
In this section we give an overview of our existing mapping
methodology PARO [8] when generating synthesizable de-
scriptions of massively parallel processor arrays from regu-
lar algorithms. The main transformations during the design
flow are briefly described in the following.
Starting from a given nested loop program in a sequential
high-level language (subset of C) the program is parallelized
by data dependence analysis into single assignment code
(SAC). On an intermediate representation of equations and
index spaces several combinations of parallelizing transfor-
mations in the polytope model can be applied:
Affine Transformations, like skewing of data spaces or the
embedding of variables into a common index space.
Localization of affine data dependencies to uniform data
dependencies by propagation of variables from one index
point to a neighbor index point.
Operator Splitting, equations with more than one operation
can be split into equations with only two operands.
Exploration of Space-Time Mappings. Linear transforma-
tions are used as space-time mappings in order to assign a
processor (space) and sequencing index (time) to index vec-
tors. Since, the number of possible space-time mappings
can be very huge an efficient design-space exploration is
performed. During this multi-objective optimization prob-
lem, latency as a measure of performance, area cost, and
energy consumption can be considered [12, 13].
Partitioning. In order to match resource constraints such as
limited number of processing elements, partitioning tech-
niques have to be applied [14].
Control Generation. If the functionality of one processing
element can change over the time control mechanism are
necessary. Further control structures are necessary to con-
trol the internal schedule of a PE.
HDL Generation & Synthesis. Finally after all the refining
transformations a synthesizable description in a hardware
description language like VHDL may be generated. This is
done by generating one PE and the repetitive generation of
the entire array.

4. CONSTRAINTS OF COARSE-GRAINED
RECONFIGURABLE ARCHITECTURES

Full custom ASIC designs have the advantage that they are
only constrained by technological and economic parame-
ters. Since programmable devices and reconfigurable logic
devices are predetermined and limited in terms of resources,
even if they are given as IP (intellectual property) model. In
the following we outline which constraints have to be taken
into account when mapping algorithms onto homogeneous
coarse-grained (re)configurable architectures. Briefly, such
an architecture consists of an array of processor elements,
memory, interconnect structures, I/O-ports, synchronization
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Fig. 1. Structure of the PACT XPP64-A processor.

and reconfiguration mechanisms.
Array. The size of the processor array. How many proces-
sor elements are in the array and how are they aligned, as
one line of processing elements, several lines of processing
elements, or one array of N × M processing elements.
Processor element. Each processor element contains re-
sources for functional operations. This can be either one
or more dedicated functional units like (multipliers, adders,
etc.) or one or more arithmetic logic units (ALUs). In case
of an ALU we have to consider if this unit is configured in
advance or during a reconfiguration phase, or if this ALU
can be programmed with an instruction set. In case of pro-
grammability it has to be considered if a local program is
only modulo sequentially executed by a sequencer or if the
instruction set includes also conditional branches.
Memory. Memory can be divided into local memory in
the form of register files inside each processor element and
into memory banks with storage capacities in the range from
hundreds to thousands of words. The alignment and the
number of such memory banks are important for the data
mapping. In addition, knowledge of several memory modes
is helpful, e.g., configuration as FIFO. If a processor ele-
ment contains an instruction programmable ALU, besides
the internal register file also an instruction memory is given.
Interconnect. Here, the structure and number of commu-
nication channels is of interest. Which type of interconnect
is used, buses or point-to-point connections? How are these
channels aligned, vertically, horizontally, or in both direc-
tions? How long can point-to-point connections be, without
delay, or how many cycles have to be taken into account
when communicating data from processor element Px1,y1

to processor element Px2,y2? Additionally, similar struc-
tures are required to handle the control flow.
Synchronization. Whether the synchronization is explicit
or implicit like in a packet-oriented dataflow architecture.
I/O-ports. The maximum bandwidth is defined by the num-
ber and width of the I/O-ports. The placement of I/O-ports
is important, since they are responsible for feeding data in
and out. Furthermore, it has to be considered if the I/O-port
is a streaming port or an interface to external memory.
Reconfiguration. Here, the configuration time and the num-
ber of configuration contexts have to be considered. In ad-
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Fig. 2. 4 × 4 processor array.

dition, possibilities of partial and dynamical reconfiguration
during the execution have to be considered.

5. CASE STUDY
In this case study our regular mapping methodology has
been applied for a matrix multiplication algorithm. Here,
different solutions are discussed and compared to existing
results. But first, in the next subsection a PACT XPP64-A
processor is described that is used as the target architecture
of our case study. Afterwards, our mapping methodology is
applied.
The PACT XPP64-A Reconfigurable Processor. PACT’s
XPP64-A [6, 15] is a high performance runtime reconfig-
urable processor array, a schematic diagram of the inter-
nal structure is shown in Fig. 1. The XPP64-A contains 64
ALU-PAEs (processing array elements) of 24 bit data with
in an 8× 8 array. RAM-PAEs are located in two columns at
the left and right border of the array. The dual ported RAM
has two separate ports for independent read and write oper-
ations. Furthermore, the RAM can be configured to FIFO
Mode (no address inputs needed). Each of the 16 RAM-
PAEs has a 512 × 24 bit storage capacity. Four independent
I/O interfaces in the corners of the array provide high band-
width connections from the internal data path to external
streaming data or direct access to external RAMs.
Matrix Multiplication Algorithm. In the following regu-
lar mapping study we consider a matrix multiplication algo-
rithm as given by the C-program (Fig. 3). It is assumed that

for (i = 0; i<N; i++)
{ for (j = 0; j<N; j++)
{ for (k = 0; k<N; k++)
{ c[i][j] = a[i][k] * b[k][j] + c[i][j];
}

}
}

Fig. 3. Matrix multiplication algorithm, C-Code.
the input matrices A and B are stored already in the arrays
a[N][N] and b[N][N], and that the arrays’ elements of
c are initialized with zero. After performing successively
parallelization, embedding and localization of variables the
algorithm in Fig. 4 is derived. The matrices A and B are
embedded into the arrays as follows, a[i][0][k]= aik,
b[0][j][k]= bkj . Considering the amount of allocated
memory it is obvious that resources are wasted by the C-
program. On the other hand, full data parallelism is ex-
plicitly represented by this program. Furthermore, the al-
gorithm is regular since affine data dependencies have been
transformed to uniform data dependencies by localization.
In order to map the matrix multiplication algorithm to the
2-dimensional PACT XPP array a design space exploration
[12] of possible space-time mappings is performed. This ex-

for (i = 1; i<N+1; i++)
{ for (j = 1; j<N+1; j++)
{ for (k = 1; k<N+1; k++)
{ a[i][j][k] = a[i][j-1][k];
b[i][j][k] = b[i-1][j][k];
z[i][j][k] = a[i][j][k] * b[i][j][k];
c[i][j][k] = c[i][j][k-1] + z[i][j][k];

}
}

}

Fig. 4. Matrix multiplication algorithm after parallelization,
operator splitting, embedding, and localization.

ploration gives a set of optimal mappings in terms of num-
ber of PEs and in terms of latency. From this set of optimal
mappings we have selected one mapping. In the following
case we consider a matrix of size N = 4. The processor
array for the chosen mapping is shown in Fig. 2. Due to the
localization procedure the matrix elements can be read into
the array at the edges. Therefore, the matrix A is sequen-
tially fed from the left side into the array where one row
of the matrix is stored in one separate FIFO. The matrix B
is sequentially fed row by row from the top into the array.
Each column of B is stored also in one separate FIFO. Af-
terwards, the elements of A (B) are propagated cycle by cy-
cle to the right (lower) neighbor processor element. Similar
to this data propagation, also an event signal is propagated
to reset every fourth clock cycle the accumulators of the pro-
cessor elements. This is the same rate as the pipelinerate of
the whole array, because after a delay of seven clock cycles
every fourth cycle a new matrix multiplication can be per-
formed. So the utilization of the 16 PAEs is 100% since in
every cycle 16 Multiply and Accumulate (MAC) operations
are completed. Since the result matrix C is distributed over
all 16 processor elements, the readout of the result data has
to be serialized. Due to space limitations we omit this trans-
formation in this paper.
Partitioned Implementation. The example of the 4 × 4
matrix multiplication algorithm benefits from the parallel
access to several internal memory blocks which have to be
very closely coupled to a surrounding architecture, e.g., to a
cache. Considering a more realistic scenario with three ex-
ternal memory blocks for each of the matrices A, B, and the
result matrix C. Each memory block can be accessed via an
independent I/O-port, i.e., in one clock cycle one element
of matrix A, one of B can be read, and one of C can be
written. From this follows that the reading of one column
of A or one row B, respectively, takes 4 clock cycles and a
MAC operation is performed only every fourth cycle per PE.
Due to the I/O bottleneck, the processor elements (the PEs
which are responsible for the arithmetic part of the calcula-
tion) are only utilized by 25%. To increase the utilization of
the PEs the number is reduced by 75% to four PEs. In or-
der to map the 4 × 4 matrix multiplication algorithm to the
reduced number of PEs the algorithm has to be partitioned.
When large problems have to mapped which do not fit onto
the array this technique has to be applied. In Fig. 5 the par-
titioning scheme chosen here and the resulting processor ar-
ray is depicted. In this example, an LPGS (local parallel,
global sequential) partitioning scheme has been used. In
this case, each index point within one tile corresponds to
one physical processor that executes the index points at the
same position of other tiles sequentially. The sequential ex-
ecution order is depicted by the numbers inside the tiles. In
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Fig. 5. (a), dataflow graph of the LPGS-partitioned matrix multiplication 4×4 example. (b), dataflow graph after performing
localization inside each tile. (c), array implementation of the partitioned example.

order to save resources (local registers) firstly, the partition-
ing is performed, Fig. 5 (a), and afterwards the localization,
Fig. 5 (b) [14]. The 2 × 2 processor array is again regular
and similar to the architecture of the non-partitioned exam-
ple. The sole difference is that for the accumulation of the
variable c, a shift register of length four is necessary in each
PE. The input to the virtual processor elements are taken in-
ternally from other PEs or externally from multiplexers as
shown in Fig. 5 (c). The multiplexers are used to select de-
layed or incoming data from the external memory according
to the event generators. The address generators are used to
access the matrix coefficients from external memory. The
implementation of the partitioned version requires a differ-
ent addressing scheme which is stored as LUT in an internal
memory.
Results and Comparison. In both of our implementations,
the fullsize and the partitioned version of the matrix-matrix
multiplication with input matrices of dimension 4 × 4, op-
timal utilization of resources is observed, i.e., each config-
ured MAC-unit performs in each cycle one operation. Com-
paring our 4×4 array implementation with the matrix-vector
multiplication as implemented by Gunnarsson et al. [16], it
is observed that using fewer resources and with better im-
plementation more performance per cycle can be achieved.
The number of ALUs is reduced from O(3N) to O(N). The
comparison was done by implementing our matrix-matrix
multiplication as N matrix-vector multiplication. Further-
more, in our implementation the output serialization, i.e.,
merging and writing of output data streams is overlapped
with computations in PEs, so we have no overhead associ-
ated with writing the data. This is a considerable improve-
ment from the implementation presented in [16] where over-
head associated with merging and writing data is O(N

2 ).
Therefore, the computational time (block pipelining period)
is reduced from O(3N) to O(N).

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a mapping methodology based on
loop parallelization in the polytope model in order to map
nested loop kernels onto coarse-grained reconfigurable ar-
rays for the first time. The obtained results are efficient in
terms of utilization of resources and execution time. In the
future we would like to adapt our PARO design methodol-
ogy to coarse-grained reconfigurable arrays in order to per-
form automatic compilation of nested loop programs.
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