
AREA EFFICIENT DECODING OF QUASI-CYCLIC LOW DENSITY PARITY CHECK
CODES

Zhongfeng Wang

School of EECS
Oregon State University

Corvallis, OR 97331 USA

Yanni Chen, and Keshab K. Parhi

Dept. of Electrical & Computer Engineering
University of Minnesota

Minneapolis, MN 55455 USA

ABSTRACT

This paper exploits the similarity between the two stages
of belief propagation decoding algorithm for low density
parity check codes to derive an area efficient design that
re-maps the check node functional units and variable node
functional units into the same hardware. Consequently,
the novel approach could reduce the logic core size by ap-
proximately 21% without any performance degradation.
In addition, the proposed approach improves the hardware
utilization efficiency as well.

1. INTRODUCTION

Recently, as opposed to random construction of low den-
sity parity check (LDPC) codes, regular quasi-cyclic LDPC
codes [1] have been proposed that can achieve comparable
performance to random codes. Furthermore, their hard-
ware implementations lead to significantly simpler mem-
ory address generation and wire interconnections. A sim-
ilar code construction method has also been extended to
irregular quasi-cyclic LDPC codes to further improve the
decoding performance [2].

Belief propagation (BP) algorithm [3] is usually em-
ployed to decode the LDPC codes, where two types of
messages are exchanged iteratively along the correspond-
ing Tanner graph, namely, the variable-to-check messages
updated by the variable node functional units (VNFU) and
the check-to-variable messages updated by the check node
functional units (CNFU). In terms of decoder architec-
tures, lower complexity partly parallel decoder [4] is more
practical compared to fully parallel design [5]. In both
approaches, the two types of functional units have been
implemented with separate hardware.

In this paper, by observing the similarity between the
CNFUs and VNFUs, a new scheme is proposed to re-map
the CNFUs and VNFUs for the partly parallel decoder into
the same hardware to reduce the overall complexity. For
the considered example (155, 64, 31) code, the area of

logic core is decreased without introducing any perfor-
mance degradation.

2. BELIEF PROPAGATION DECODING
ALGORITHM

Following the original BP algorithm, the check-to-variable
message Rcv for the check node c and variable node v us-
ing the incoming variable-to-check messages Lcn is com-
puted by CNFU as follows.

Scv = Πn∈N(c),n�=v sign(Lcn) (1)

Rcv = −Scv Ψ (
∑

n∈N(c),n�=v

Ψ(Lcn)) (2)

where Scv is the sign part of Rcv and N(c) denotes the set
of variable nodes connected to the check node c. The func-
tion Ψ(x) = log(tanh(|x2 |)) can be implemented with
look-up-table (LUT) operations. On the other hand, the
variable-to-check message Lcv for the check node c and
variable node v using the incoming check-to-variable mes-
sages Rmv and received channel information rv is com-
puted by VNFU,

Lv =
∑

m∈M(v)

Rmv −
2rv

σ2
(3)

Lcv = Lv − Rmv (4)

where M(v) is the set of check nodes connected to vari-
able node v and 2rv

σ2 is the intrinsic information while
σ stands for the estimated standard deviation of AWGN
channel. The soft output Lv for the variable node v is later
sliced to check whether the decoded output is a codeword
or not.

According to the above algorithm, the CNFU and VNFU
can be implemented as illustrated in Fig. 1 and Fig. 2, re-
spectively. For the sake of clarity, the parity checking part

V - 490-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

LUT

LUT

LUT

LUT

LUT

−

−

−

−

LUT

LUT

LUT

LUT

LUT

SM−2’s

SM−2’s

SM−2’s

SM−2’s

SM−2’s

−

5

5

5

5

5

5

5

5

5

5

Rc

Lc3

5

5

Rc

Sc

1

Sc1

Lc1

Lc2
2

Rc

Lc4

Lc 5

3

Rc4

Rc

Sc2

Sc3

Sc4

Fig. 1. Original architecture for check node functional
unit

Rc

Lc

−

−

− 2’s−SM

2’s−SM

2’s−SM

zv

2

L v

1

Rc3

Rc2

Lc1

sgn(L)v

Lc3

Fig. 2. Original architecture for variable node functional
unit

is not shown in Fig. 1 and the intrinsic information 2rv

σ2 is
represented by zv in Fig. 2.

Obviously, CNFUs are more complicated than VN-
FUs. It is also worth noting that data format transfor-
mation block, either from sign-magnitude (SM) to two’s
complement (2’s) format or vice versa, exists in both types
of functional units. The major advantage of using sign-
magnitude format for LUT operations is that each LUT
size can be reduced by half by making use of the symme-
try properties of Ψ(x) function. However, it is still more
convenient to use two’s complement format in VNFU com-
putations.

3. PARTLY PARALLEL DECODER
ARCHITECTURE FOR QUASI-CYCLIC LDPC

CODES

The parity check matrix H for quasi-cyclic LDPC codes
[1] can be constructed as follows: for a desired (j, k)
code, first construct the block all-one matrix H ′ with size
of j × k, then replace each element in H ′ by a m × m

cyclically shifted identity matrix with certain shift offsets,
where m is a prime number and j, k are among the prime
factors of m−1. The shift offsets are given by bs−1×at−1

modulo m, where 1 ≤ s ≤ j, 1 ≤ t ≤ k and a, b have
multiplicative orders of k, j, respectively. As a result, the
obtained (j, k) code has parity check matrix H with size
of jm × km and code rate R ≥ 1 − (j/k) (there are
at least j - 1 dependent rows in H). This code is regu-
lar code since both the variable node degrees and check
node degrees are constants. To achieve better decoding
performance, irregular codes could also be constructed by
optimizing the node degrees [2].

Consider the (3, 5) regular quasi-cyclic LDPC code as
an example. In terms of partly decoder architecture, one
straightforward approach similar to [4] is to use three 5-
input CNFUs, five 3-input VNFUs and 15 message memo-
ries ms,t with each memory containing m memory words
as shown in Fig. 3.

CNFU

CNFU

CNFU

VNFUVNFU VNFU VNFU VNFU

m1,1 m1,2 m1,3 m1,4 m1,5

m2,1

m3,1

m2,2

m3,2

m2,3

m3,3

m2,4

m3,4

m2,5

m3,5

z
2

z
4

z
5

z
3

c1

z
1

c2 c3 c4 c5

Fig. 3. Partly parallel decoder for (3, 5) quasi-cyclic
LDPC code

The intrinsic information are retrieved from z mem-
ories and c memories store the hard decisions of the soft
outputs sgn(Lv). Consequently, the decoding process could
be carried out as follows:

• Initialization: flush the received intrinsic informa-
tion to both the z memories and the corresponding
j × k extrinsic information memories ms,t. The
data are stored column-wise in the z memories and
row-wise in ms,t memories.

• Check node update: in each subsequent iteration,
the updated variable-to-check messages are simul-
taneously read from all the ms,t memories by all the
CNFUs, each CNFU reads k memories in a block
row, i.e., those m rows sharing the same s value.
Then after CNFU computation the updated check-
to-variable messages are written back to the same
address. Consequently, in one iteration totally m

V - 50

➡ ➡

clock cycles are required to complete the updating
process of all the j × m rows.

• Variable node update: similarly, in the same iter-
ation, the updated check-to-variable messages are
simultaneously read from all the ms,t memories by
all the VNFUs, each VNFU reads j memories in
a block column, i.e., those m columns sharing the
same t value. Then after VNFU computation the
updated variable-to-check messages are written back
to the same address as read operations. Consequently,
in one iteration totally m clock cycles are required
to complete the updating process of all the k × m
columns.

• Parity checking: at the end of every iteration, all the
soft outputs are sliced to check all the parity equa-
tions. The iterative process will be terminated when
either one codeword x satisfying Hx = 0 is found,
or the pre-assigned maximum number of iterations
is reached.

The decoder structure in Fig. 3 has the obvious ad-
vantage of memory requirement. In addition, it possesses
some other nice features including straightforward mem-
ory address generation, localized memory access and sim-
ple routing. From the decoding process outlined above,
we know that in one iteration both check node update and
variable node update operations have to be performed,
one after another. This leads to the merely 50% hardware
utilization efficiency (HUE) of the logic core in Fig. 3
because all the VNFUs are idle when CNFUs are busy
during the check node update and vice versa during the
variable node update. To improve the HUE of logic core,
the approach we considered is to re-map the VNFUs and
CNFUs into the same hardware by making use of similar-
ity between the two stages of BP algorithm to get smaller
area design.

4. AREA EFFICIENT BP DECODING

By re-distributing the computation load between CNFUs
and VNFUs, the two stages of BP algorithm could be
equivalently reformulated as follows. Then for CNFUs,

Scv = Πn∈N(c),n�=v sign(Lcn) (5)

Rcv = −Scv

∑

n∈N(c),n�=v

Ψ(Lcn) (6)

and for VNFUs,

Lv =
∑

m∈M(v)

(−sign(Rmv)Ψ(Rmv)) −
2rv

σ2
(7)

Lcv = Lv + sign(Rmv)Ψ(Rmv) (8)

where all the notations remain the same as in Section 2.
As a result, their corresponding architectures are depicted
in Fig. 4 and Fig. 5, respectively.

2’s−SM

2’s−SM

2’s−SM

LUT

LUT

LUT

LUT

LUT

4

5

5

5

5

5

Sc1

2

Sc

−

−

−

−

−5

5

5

5

5

2’s−SM

2’s−SM

Lc1

Lc2

Lc3

Lc

4

Lc5

Rc3

Rc4

Rc5

Rc2

Rc1

Sc

Sc5

Sc3

Fig. 4. Reformulated architecture for check node func-
tional unit

SM−2’sLUT 55

1

SM−2’sLUT 55

1

3

SM−2’sLUT 55

1

Lc

L v

Rc1

Rc2

Rc

2

Lc3

Lc1

zv sgn(Lv)

−

−

−

Fig. 5. Reformulated architecture for variable node func-
tional unit

In this way, the two stages of BP decoding are better
balanced since each CNFU or VNFU has one LUT opera-
tion in the critical path as opposed to two LUTs in CNFU
and none in VNFU in the original architectures. However,
the HUE is still only 50%. To improve the HUE, an al-
ternative approach compared to [6] is considered in this
paper. The main idea is that the entire set of both CNFUs
and VNFUs can be re-mapped into the same hardware as
illustrated in Fig. 6 by realizing that the numbers of in-
puts processed by CNFUs and VNFUs per clock cycle are
the exactly same, which are equal to the total number of
non-zero entries in the block matrix H ′. In Fig. 6, there
are totally 15 inputs and 15 outputs denoted as Inp and
Outp, respectively, where 1 ≤ p ≤ 15. The new re-
mapped hardware performs CNFU operations when the

V - 51

➡ ➡

6
6

control

−

6
6

−

−

−

6
6

−

−

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’sLUT 0

1

0
1

−

−6
6

−

2’s−SM

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’s

0
1

LUT

1
0

1
0

0
SM−2’s

6
6

−

−

−

−

−

−

6
6

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’sLUT 0

1

0
1

1
0

In

2’s−SM 0
1

LUT

2’s−SM 0
1 SM−2’s

0
1

LUT

0
1

z 2

z

z

2’s−SM 0
1 SM−2’sLUT 0

16
6

2’s−SM 0
1 SM−2’sLUT 0

1

v

Out

2

2’s−SM 0
1 SM−2’s

0
1

LUT

Out

0
1

0
1 SM−2’sLUT 0

16
6

2’s−SM
1

LUT 0
16

6

zv 1

In1

In2

In3

In4

In5

In6

In7

In8

In9

In10

In11

In12

13

In14

In15 SM−2’s
0
16

6

v

v 3

4

v 5z

Out 15

Out 14

Out 13

Out 12

Out 11

Out 10

Out 9

Out 8

Out 7

Out 6

Out 5

Out 4

3

Out

1

sign1

sign2

sign3

sign4

sign5

Fig. 6. New remapped hardware performing both CNFUs
and VNFUs operations

control signal is ′0′, thus the inputs are variable-to-check
messages and the outputs are check-to-variable messages.
On the other hand, when the control signal switches to
′1′ VNFU operations are performed, where the inputs are
check-to-variable messages and the outputs are variable-
to-check messages. Therefore, both VNFUs and CNFUs
operations could be performed by the same piece of hard-
ware, which is always busy in every iteration and thus the
HUE is increased to 100%.

To compare the area of the new remapped hardware
with the original approach using separate VNFUs and CN-
FUs, both were described in VHDL, simulated and syn-
thesized by SynopsisTM tools. Some results are shown
in Table 1.

From Table 1, it is easily seen that the area of the pro-
posed architecture is reduced by 21% compared to the
original design. Furthermore, no performance degrada-
tion is introduced. Here the example we considered is (3,
5) code with relatively short length. However, the hard-
ware saved would remain the same for a longer code ob-
tained by choosing a larger m since the changes are only
in VNFUs and CNFUs that are independent of the length.

Table 1. Area comparison between original and proposed
architectures

VNFU

Original set

10

none

none

15

noneCNFU

number of
2−to−1 MUXs

number of

37

none

10*3 = 30

number of
6−bit adders 32−entry LUTs

Area
number of gates

9

6

34

1603

565

7634

6041Remapped set

9*3 + 6*5 = 57

5. CONCLUSIONS

In this paper, for a class of quasi-cyclic LDPC codes, a
scheme using common hardware to compute both bit nodes
and check nodes is described, which leads to about 21%
area reduction of functional units part for our considered
(3, 5) code. In fact, for any (j, k) quasi-cyclic LDPC
code, if the row weight k is a multiple of column weight j,
namely, the number of inputs processed by CNFUs is the
multiple of the number of inputs processed by VNFUs, the
remapping process between VNFUs and CNFUs is cer-
tainly more straightforward and simpler. Moreover, as the
numbers of CNFUs and VNFUs are increased more area
saving is expected due to the larger percentage of logic
sharing.

6. REFERENCES

[1] D. Sridhara, T. Fuja, and R. M. Tanner, “Low den-
sity parity check codes from permutation matrices,”
Conf. on Info. Sciences and Systems, The John Hop-
kins University, March 2001.

[2] D. Hocevar, “LDPC code construction with flexible
hardware implementation,” in Proc. ICC, 2003.

[3] D. J. C. Mackay, “Good error correcting codes based
on very sparse matrices,” IEEE Trans. Inform. The-
ory, vol. 45, pp. 399-431, March 1999.

[4] T. Zhang and K. K. Parhi, “A 54 MBPS (3, 6)-regular
FPGA LDPC decoder,” in Proc. IEEE SIPS, pp. 127-
132, 2002.

[5] A. J. Blanksby and C. J. Howland, “A 690-mW 1-
Gb/s 1024-b, rate-1/2 low-density parity-check code
decoder,” IEEE J. Solid-State Circuits, vol. 37, pp.
404-412, 2002.

[6] Y. Chen and K. K. Parhi, “High throughput over-
lapped message passing for low density parity check
codes,” in Proc. IEEE/ACM GLSVLSI, pp. 245-248,
2003.

V - 52

➡ ➠

