<

A METHODOLOGY FOR IP INTEGRATION INTO DSP SoC:
A CASE STUDY OF A MAP ALGORITHM FOR TURBO DECODER

P. Coussy', D. Gnaedig2’3, A. Nafkhd', A. Baganne', E. Boutillon', E. Martin'

"LESTER LAB, UBS University - > TurboConcept - ° ENST Bretagne

ABSTRACT

Re-use of complex Digital Signal Processing (DSP)
coprocessors can be improved using IP cores described at a
high abstraction level. System integration, that is a major step in
SoC design, requires taking into account communication and
timing constraints to design and integrate IP. In this paper we
describe an IP design approach that relies on three main
phases: constraints modeling, IP constraints analysis steps for
feasibility checking and synthesis. Based on a generic
architecture, the presented method provides automatic
generation of IP cores designed under integration constraints.
We show the effectiveness of our approach in a case study of a
Maximum a posteriori MAP algorithm for Turbo Decoder.

1. INTRODUCTION

IP reuse is a key part of improving productivity for system-on-
chip (SoC) designs. Unfortunately, the main problem when re-
using RTL pre-designed component arises from their integration
and more particularly from the communication architecture
features. System integrator can use standard interface such as
Virtual Component Interface proposed by VSIA [2] and Open
Core Protocol proposed by the OCPIP [3]. However in DSP
applications, in addition to the protocol aspects, a SoC designer
has also to synchronize the components and to buffer data to
ensure the system behavior and to meet timing constraints.
Virtual components are indeed delivered at the RTL level that is,
following the VSIA taxonomy, the highest abstraction level for
synthesizable IP models (soft cores). However, such a
description may be parameterizable, it relies on a fixed
architectural model with very restricted customization
capabilities. This lack of flexibility of RTL IPs is especially true
for the communication unit whose sequence orders and timing
requirements are set. IP cores are hence connected to the SoC
bus through specific interfaces [4] or wrappers [5], that adapt the
system communication features to the IP core requirements: SoC
integrator must manage both IP execution requirements and
integration constraints. This critical step requires a good
modeling of both sets of constraints and techniques to design the
interface module [6]. Unfortunately, this adaptation increases the
final SoC area and also decreases system performance. In some
cases, the I/O timing requirements cannot be respected due to the
wrapper overhead and can cause the SoC design to fail.

In [8], we propose a SoC design methodology based on
algorithmic IP core re-use. Based on high-level synthesis
techniques under constraints, our approach aim to optimally
synthesize the IP by taking into account the system integration
constraints: application rate, technology, bus format, I/O timing

0-7803-8484-9/04/$20.00 ©2004 IEEE V-45

properties specified by timing frames of transfers.

This paper is organized as follows: First in section 2 we give the
problem formulation of the IP design under timing constraints.
Section 3 reminds the main steps and formal models on which
our design approach is based. In section 4, we show the
effectiveness of our approach by presenting an integration case
study of a MAP algorithm [12] into a turbo decoder architecture
for decoding the error correcting codes called turbo codes [10].

2. PROBLEM FORMULATION

At the application level, the SoC designer describes the system
as a set of communicating functions that specify what the system
is supposed to do. The application level description is refined
into a system level description when choosing implementation of
functions to pre-designed or not SW/HW components.
Performance and cost are then the primary issues. System level
description allows to trade-off throughput against memory-size:
architecture design of DSP applications indeed focus on (i)
avoiding bottlenecks in the buses and I/O buffers for data-
transfer, (ii) the cost of data storage and (iii) respecting strict
timing constraints. According to both the application and the
architecture design constraints, IP cores are selected from a
database. SoC communication refinement then leads to refine
and determine detailed integration constraints that must be
supported by the IP core. They can be for instance: 1) the
communication features used for data transfer (burst type and
size...); 2) timing requirements for each data or group of data
transfer (transfer delay estimation, date or timing frame of
transfer) 3) architecture topology (point-to-point, shared bus).

Let us consider an application composed of three functions:
demodulation, turbo decoding and MPEG2 (see Fig. 1).
Application Level
Turbo
| Rate = 50Mb/s Demodulator| decoder MPEG2

System Level

|I!l
;

Rate = 50Mb/s
Memory cost minimization

Algorithm & Architecture Level
Rate = 50Mb/s

Memory cost minimization — =
Algorithm ‘ SubMAP(i) | = [SubMAP(i-1)|

/O Constraints

Fig. 1: SoC Design & Constraints refinement

The SoC integrator hence refines the IP integration constraints
during the system design steps. These constraints therefore
originate from the application requirements (data rate...), the
architectural design criteria (area, power consumption, memory
cost...), implementation choice (bus width, protocol...) and

ICASSP 2004

technological library. IP design constraints have to be modeled
to support all the previous features and to drive efficiently the IP
synthesis. The integration constraints include all the
communication features but also the application rate and the
technological constraints.

A new design flow based on synthesis under constraints is
needed to solve the problem of IP core reuse. This includes (1)
modeling styles to represent system constraints and algorithm
requirements, (2) analysis steps checking the feasibility and the
consistency of the system constraints according to the algorithm
ones and (3) methods and techniques for optimal synthesis of
different IP core parts: processing unit (PU), memory unit (MU),
control unit (CU) and communication unit (COMU).

3. DESIGN APPROACH OVERVIEW

Our methodology proposes to raise the abstraction level of IP
synthetizable models by introducing the concept of behavioral IP
[9], described as an algorithm and specified using HDL language
such as SystemC. Starting from the system description and its
architecture model, the integrator, for each bus or port that
connects the IP to SoC components, refines and specifies 1/0
protocols, data sequence orders and transfer timing information.

System Specification

& Refinement Algorithm Specification

o
=
+ =
| I Co icati |]
e : features I Constraints graph o
H construction =

; ¥ ACG

Constraint graph Constraiqt Analysis

4\ construction
locG &
[
=
©
=
<
Constraint Analysis
no - ';5
PU Synthesis &
Control generation o
3
. <
System Design Interface/wrapper E
Synthesis ()
RTL IP Core
..................................... “Ready to Plug”

Fig. 2: Design Approach

The virtual component specification is modeled by a Signal Flow
Graph SFG. The difference between a SFG and a Data-Flow
Graph DFG consists in the delay operation used in DSP
modeling to express the use of a data computed in the previous
iteration of the algorithm. This intermediate SFG representation
is produced by the compilation phase in the behavioral synthesis
flow. In a first step, we generate an Algorithmic Constraint
Graph ACG from the operator latencies and the data
dependencies expressed in the SFG. The latencies of the
operators are assigned to operation vertices of the ACG during
the operator's selection step of the behavioral synthesis flow.
Having described the IP behavior and the IP design constraints
in a formal model, we analyze the feasibility between the rate,
the data dependencies of the algorithm and the technological

constraints (see Fig. 2). This analysis checks the ACG for
positive cycles to ensure that the constraint graph is feasible
without considering input arrival dates.

In order to support the features of communication architectures
specific to DSP application, we extend the SIF model
(Sequential Intermediate Format [7]). This new formal model
named IOCG (IO Constraint Graph) supports expressing of
integration constraints for each bus (id. port) that connects the IP
to the SoC components. It allows (1) to specify transfer related
timing constraints such as ordered transactions, relative timing
specification, min-max delay, (2) to include architecture features
and (3) to express non determinism in the data transfer time.

Finally we generate a Global Constraint Graph (GCG) by
merging the ACG with the IOCG graph. Merging is done by
mapping the vertices and associated constraints of /OCG onto
input and output vertices set of ACG. A minimum timing
constraint on output vertices (earliest date for data transfer) of
the /OCG are transformed into the GCG in maximum timing
constraints (latest date for data computation/production).

With the formal description of the set of constraints, we analyze
the consistency of the IP design constraints according to the
algorithm ones. Consistency analysis refers to the dynamic
behavior of the GCG graph.

The entry point of the IP core design task is the global constraint
graph GCG. This design step relies on the synthesis of different
functional units of the IP core: PU, MU, CU and COMU.

Further information about formal models, analysis and synthesis
steps, which are not described here, can be found in [§].

4. IMPLEMENTATION OF THE MAP
ALGORITHM

We apply our design methodology on the design of the maximum
a posteriori (MAP) algorithm which is used to provide a soft-in
soft-out (SISO) decoder of a convolutional code. Two SISO
decoders are used in turbo-decoders [10] to iteratively refine
reliability of the decoded symbols.

4.1. MAP Algorithm Overview

The MAP algorithm, also called the Forward-Backward
algorithm (FB), provides for each transmitted symbol u, k = 0.

N-1 a soft output L(u;) called the extrinsic information. It is
computed by using the received values of the channel
Y={y}}k=0.n-; and the a priori information L*(u) provided by the

other decoder, which is its extrinsic soft output. The soft
estimate L°(u;) is computed by exhaustively exploring all
possible paths in the trellis using a forward recursion and a
backward recursion. To simplify hardware implementation, we
use the Max-Log-MAP algorithm described in the logarithmic
domain [11]. This algorithm consists of three steps (Fig. 3(a)).

e Forward recursion. The forward state metrics A, are
recursively calculated using the symbols in an increasing order
from O to N-1. The branch metrics of the forward recursion are
computed (BMC) with the received symbols and the a priori
information. The forward state metrics are stored in an internal
memory in order to be used to compute the soft output.

e Backward recursion. The backward state metrics B; are
recursively computed using the symbols in a decreasing order
from N-1 to 0.

e Soft-Output Computation. The soft output for each
symbol at time & is computed by using the backward state metric
B, and the corresponding forward state metric A, ; read from the
memory.

The initial state metrics of the forward and backward recursions
Ap and By.; are provided as an input of algorithm. The final
metrics Ay.; and By are part of its outputs. More details on recur-
sions initializations can be found in [12] and related references.

Symbol AN W Forward A
ymools] Symbols By, !]
By, i 1 \ Backward N:‘MA[l M IK}

Memorizing B
3L 3L

.
H
|
€ i
L) 2L By :
|
B L/ N
L1 .
4 Byt B
Ll -
) 2N Time Yoo L 2L 34 Time

a)

Fig. 3: Graphical representation of the (a) FB and the (b)
SW-FB algorithms

4.2. Algorithm Architecture Matching (AAM)

We described the classical FB algorithm. We now focus on its
implementation by matching the algorithm to the architectural
architectural constraints (memory, latency, throughput,...).

Due to its schedule, the backward recursion cannot start before
the end of the forward recursion, and hence, the maximal latency
of the FB algorithm is 2.N. Moreover, N state metrics vectors
need to be memorized, which requires a large amount of
memory. To reduce both the memory requirements and the
latency, a sliding window algorithm (SW) is used [13]. Using the
same graphical representation as in [12], our modified SW-FB
algorithm with windows of size L symbols is depicted in Fig. 3.
In this figure, the horizontal axis represent time, with units of a
symbol period. The vertical axis represents the received symbol.
For each window working on symbols «L to (0+1)L, a forward
recursion with memorization is performed from the initial state
metric given by the previous window. For the first window the
initial state metrics are initialized with A, The backward
recursion is then performed on the same window from an initial
state metric B, given by the previous iteration [12]. At the
first iteration, the backward state metrics are initialized with the
all-zero vector. The windows are then processed sequentially by
a single elementary component called SubMAP and performing a
forward-backward algorithm on L symbols. This SW-FB
algorithm requires to store L state metrics vectors and its
maximal latency is reduced to 2.L symbols.

We now present the description of the elementary SubMAP
component, used to build the complete SW-FB algorithm. The
simplest and natural solution to implement the SubMAP
component consists in using the same symbols oL to (o+1)L for
the forward and backward recursions. This solution corresponds
to the natural description of the algorithm in a classical
sequential language (C for example). It implements horizontally
(same symbols for the forward and backward recursions) the
algorithm and is therefore denoted SubMAP-H. This component
basically implements one forward and one backward processor.
With the scheduling represented in Fig. 3.b, the SW-FB
algorithm requires two SubMAP-H components working in
parallel in staggered rows: the first one uses the symbols aL to
(o+1)L, while the other uses the symbols (c+1)L to (o+2)L.
However, this scheduling requires to store 2.L forward state

metrics and to duplicate the forward and backward processors.
The amount of memory be divided by two by using only one
SubMAP-H component with the scheduling of Fig. 4.a, but the
real time constraint is not met anymore. The timing behavior and
10CG of the SubMAP-H component are shown in Fig. 5 and Fig.
6, respectively.

Symbols SymlJols \ \ , A A
A [A . !
i Init_Str essingAnd
N=4L bN=4L ___L_.__QQF.:, ,,,,,,,, N___
1 1 1
2 L =
H H
2L 2L R
; :
Lig] L -
= = B
0 L 2L 3L 4L 5L oL 7L JLTMe L 2L 3L 4L sL nime

a) 4 b)
Fig. 4: SW-FB scheduling with one (a) SubMAP-H or one (b)
SubMAP-V component

2 4 L+2 2L+2 2L+4 2L+6

Port 1 Ay LA

Port 2 By Y
1

Ut F i I
]

Port3 ! l

Eyc]e
Fig. 5: Timing Behavior of the SubMAP-H component

LN .
SHOS)

Fig. 6: I0CG of the SubMAP-H component

In order to overcome the problem of memory duplication and to
meet the real-time constraint, the elementary SubMAP is
modified by specifying the parallel execution of the two
recursions. It implements vertically the algorithm (SubMAP-V)
by working on two consecutive windows as shown in Fig. 4.b:
the forward recursion works on the current window with the
symbols oL to (o+1)L while the backward recursion works on
the previous window with symbols (a-1)L to o.L. In this case,
the backward recursion is performed on data stored in the
internal memory of the SubMAP-V component.

The timing behavior of the SubMAP-V component is depicted in
Fig. 7. The required latency of the SubMAP-V component
corresponds to the delay of the critical path to produce an
extrinsic information: the first soft output is produced after 4
clock cycles.

0
2 4 L2 L4 L+6 L+8
Port 1 Ay LA
Port2| B Y
ut i Processing

' 1

1 L= B, A
Port3 ; ‘ o N-1

Eycle
Fig. 7: Timing behavior of the SubMAP-V component

4.3 Synthesis Results

We described in the previous section how a SoC designer chose
a specific algorithm following an AAM approach. We present
now the results of the synthesis under constraints, obtained using
the HLS tool GAUT [15], [16]. The convolutional code used for
this experience is a duo-binary circular recursive systematic

convolutional code used in the DVB-RCS standard [14]. The
trellis is composed of 8 states with 4 branches leaving each state.
The SW-FB is implemented with L=32.

Fig. 8(a) represents the JOCG constraint graph used for the MAP
algorithm synthesis. I/O timing requirements are depicted in Fig.
7. Hierarchical vertices (see [8]) described in Fig. 8(b) are used
to express simultaneous arrival date of input data. For instance,
the 4 backward state metrics, are simultaneously transmitted (i.e.
the 8 metrics are transferred in 2 steps). Hierarchical vertices are
used for all input and output vertices of the /OCG. Notice that
output production dates are specified -contrarily to Fig. 6,
relatively to the vertex v, that represents the start time.

(b)
Fig. 8: I0CG of the SubMAP-V component

The SFG includes 95210 edges and 44048 vertices, divided in
23168 operations and 20880 data. The source file describing the
algorithm uses 128 lines of behavioral VHDL code to specify the
entire SubMAP-V computation. Table 1 presents the SFG
operation vertices classified by function types.

Inv. Add. Sub. | Comp. | Data vertices
8448 11520 2304 896 20880

Table 1: SFG Composition

The VHDL RTL file, describing the SubMAP-V architecture
includes 2469272 lines (20 thousand times more than the source
code). The complete generation took only 35 minutes on a 900
MHz SunBlade2000, with 1G RAM and running Solaris8. This
time is composed of 4 minutes to parse, compile and generate the
intermediate representation ACG; 2 minutes for the scheduling
and 29 minutes to generate the control unit, processing unit and
their respective VHDL files. Notice that most of the time was
spent in the RTL file generation. RTL description has been
simulated using Modeltech's ModelSim5.5¢ simulator and
functional validation has been completed by comparing RTL
results to the C model ones.

The design results are shown in Table 2, for a 200MHz clock
frequency using a technological library in which the latency of
the adder, the subtractor and the comparator is one cycle. The
final architecture includes 64 inverters, 96 adders, 32 subtractors
and 52 comparators. The FSM controlling the processing unit
includes 144 states and 8 bit width instructions. The generated
RTL architecture includes 996 registers: this corresponds to an
average of 3 registers by operator (notice that our architectural
model imposes a minimum of 2 registers for 1 operator [8]).

FSM states | Inv. | Add Sub. Comp. Registers UT
144 64 96 32 52 996

Table 2: SubMAP-V under constraint synthesis results

Table 3 depicts the awaited amount of operators for the
SubMAP-V component. The number of components given by the
synthesis are in accordance to our estimations. Less comparators
and far more inverters are required by our architecture because

of component re-using and lack of reduction of regular
expressions, respectively. We are intensively working on this last
point that will have an impact on the total amount of operators
and registers since it can drastically reduce the number of
component for the computation of the branch metrics.

Computation Inv. | Add. | Sub. | Comp.
BMC 4 32 16 0
Forward 32 24
Backward 32 24
Extrinsic 8 32 16 28
12 | 96 32 72 Total

Table 3: Awaited amount of operators for SubMAP-V

5. CONCLUSION

In this paper, a methodology for IP integration into DSP SoC has
been presented. This approach, that relies on constraints
modeling, constraints analysis and synthesis, help the designer to
efficiently implement complex applications. Based on an
integration case study of a MAP algorithm into a turbo decoder
architecture, an illustration of our design flow has been
presented. This experiment has shown the interest and the
effectiveness of our approach to quickly design complex DSP
applications by using behavioral IP cores.

Acknowledgements
These works have been realized within the French RNRT Project ALIPTA.

6. REFERENCES

[1] H. Chang, et Al., "Surviving the SoC revolution, A guide to
Platform-Based Design", Kluwer academic publishers, 1999

[2] Virtual Socket Interface Alliance, http://www.vsi.org

[3] OCP-IP International Partnership, http://www.ocpip.org/

[4] D. Hommais, F. Pétrot, I. Augé, "A Practical Toolbox for
System Level Communication Synthesis", In Proc. of CODES,2001
[5] G. Nicolescu, et al., “Validation in a Component-Based
Design Flow for Multicore SoCs”, In Proc. of ISSS, 2002.

[6] P. Coussy, A. Baganne, E. Martin, "A Design Methodology for
IP Integration”, In Proc. of ISCAS, 2002.

[7] D. Ku and G. De Micheli, "Relative Scheduling Under Timing
Constraints: Algorithms for High-Level Synthesis of Digital
Circuits", IEEE Trans. CAD/ICAS, vol. 11, pp. 696-718, June 1992
[8] P. Coussy, A. Baganne, E. Martin, " Communication and
Timing Constraints Analysis for IP Design and Integration ", In
Proc. of IFIP VLSI-SOC, 2003.

[9] G. Savaton, P. Coussy, E. Casseau, E. Martin "A Methodology
for Behavioral Virtual Component Specification Targeting SoC
Design with High-Level Synthesis Tools", In proc. of FDL, 2001.
[10] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo Codes”,
Proc. ICC’93, Geneva, Switzerland, pp. 1064-1070, 1993.

[11] P. Robertson, et Al., "A Comparison of Optimal and Sub-
optimal Decoding Algorithm in the Log Domain", Proc ICC, 1995.
[12] E. Boutillon, et Al., "VLSI Architectures for the MAP
Algorithm", IEEE Trans. On Communications, vol51, No.2, 2003.
[13] H. Dawid and H. Meyr, "Real time algorithms and VLSI
architectures for soft-output MAP convolutional decoding," in Proc.
PIMR'95, vol.1, pp.193-197, 1995.

[14] C. Douillard, al., "The Turbo Code Standard for DVB-RCS",
Proc. 2" Int. Symp. on Turbo Codes and Rel. Topics, Sept. 2000
[15] A. Baganne, J.L Philippe, E. Martin "A Formal Technique for
Hardware Interface design”, In. IEEE Trans. On Circuits And
Systems, Vol.45, N5, 1998,

[16] GAUT - HLS Tool for DSP, http://lester.univ-ubs.fr:8080/

I 2

