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ABSTRACT

Most existing analyses of quantization effects are given 

under the condition that all decision-making blocks, if 

exist in a system, produce identical decisions in both 

fixed-point and infinite-precision (IP) implementations. 

However, in doing floating-point to fixed-point 

conversion (FFC), a fixed-point design with occasional 

decision errors may still be an acceptable approximation 

of the IP system. We study the effect of this decision error, 

and relate its probability to the fixed-point data types. Our 

previous FFC methodology is then extended to include 

systems with possible decision errors due to quantization. 

The extended approach is applied to both CORDIC and 

BPSK transceiver. 

1. INTRODUCTION 

To lower hardware costs, most implementations of digital 

systems rely on binary fixed-point (FP) number systems—

either 2’s complement or unsigned-magnitude—with  

roundoff and truncation quantization [1-6]. Existing work 

studies the effect of this quantization on systems that have 

no decision-making blocks, a term that is to be defined in 

section 2, or based on the assumption that there is no 

decision error [2-6]. In particular, an automated infinite-

precision (often also referred as floating-point) to fixed-

point conversion (FFC) method has been proposed in [3] 

based on a perturbation theory that uses this assumption. 

The rigorous proof of theory is given in [2]. An 

implementation of the tool has shown inspiring results 

tested on systems when this condition applies. However, 

in many complicated communication and DSP systems, 

decision errors in a fixed-point system are acceptable as 

long as its probability is small; then, the system is still a 

fair approximation of its IP correspondence. Other FFC 

methods based on unguided optimization and recursive 

estimations without understanding of the effects of these 

decision errors, on the other hand, require a large number 

of long simulations [1]. This becomes especially time-

consuming when each simulation takes minutes to hours 

in bit-error-rate (BER) type of estimation.  

Based on a study of the types of decision making 

blocks and the probability of decision errors as a function 

of fixed-point data-types in a system, we extend the FFC 

method proposed in [3] to include possible decision 

errors. The updated FFC problem formulation looks 

similar to [3] with additional constraints, such that each 

requires one BER type of estimation for coefficient 

fitting—itself a well-defined task. Finally, we show two 

examples, BPSK transceiver with root-raised-cosine-filter 

and CORDIC, to support our analytical results. 

2. ERROR OVER DECISION MAKING BLOCKS 

2.1. Categorizing signals and blocks  

Let us first categorize signals and blocks in a digital 

system and give the necessary definitions. Digital signal 

processing systems are constructed by the interconnection 

of functional operators such as adders and multiplexers. 

Quantizers in a fixed point (FP) system can be used to 

reduce the accuracy of some signals associated with these 

functional units from infinite-precision (IP) to limited-

precision. These signals which are allowed to have 

reduced accuracy will be called arithmetic signals. Signals 

which are already discrete and are not modified by 

quantizers will be termed logical signals.  

Assume each operator generates one output. 

Operators in an IP system can be separated into different 

types,  

1. Arithmetic operator—the output is an arithmetic signal, 

such as adder and delay in an FIR or LMS. 

2.  Logical operator—all the inputs and outputs are 

logical, such as an AND gate in control logic. 

3. Decision-making operator—some of the inputs are 

arithmetic and the output is logical, such as the final 

slicer in a communication system. 

For example, the slicer operator, denote as SL, is a 

decision-making operator. It has one arithmetic signal 

input x and one logic signal output y.  The slicer function 

is given as 
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All decision-making operators can be equivalently 

modeled as a combination of arithmetic operator, slicers 

(a basic decision-making operator), and control operators 

as shown in Fig. 1. 

Fig. 1. Using slicers to represent any decision-making operators 

For example, consider a comparator A with input x1

and x2 that outputs 1, if x1 > x2, and 0 otherwise. Its 

transfer function can be rewritten as,  

)1),((),( 1221 xxfxxf −= SLA NAND ,

where NAND is a logic operator that gives 0 if two inputs 

are the same, and 1 otherwise. Then, comparator A is

equivalent to a combination of a subtractor, a slicer and a 

NAND operator.  So, the analysis in the subsequent 

discussion concentrates on slicer as the typical decision-

making block. 

2.2. Weak and strong decision errors 

Quantization errors propagating through arithmetic 

operators that have smooth transfer functions give a small 

perturbation on IP output [2].  This small perturbation, 

however, can propagate into possible different decisions 

between IP and FP system at a decision-making 

operator—an effect that is explicitly ignored as an 

assumption in [2]. We define decision differences 

between the corresponding decision-making operators in 

FP and IP systems as decision errors of the FP system.  

Decision errors of a slicer usually happen when the 

magnitude of the input IP signal to a slicer is compatible 

to its accumulated quantization noises.  Therefore, it is not 

acceptable to assume that decision error events at a signal 

node are independent to all the signals in IP system. For 

example, Fig. 2. shows an architecture of absolute value 

function. A slicer judges the sign of the input x, possibly 

corrupted by some quantization noise e. If the sign is 

positive, a following multiplexer will select the input 

directly; otherwise, the negated value is selected.  

Without losing insight, let’s assume IP signal x and 

quantization noise e zero-mean independent Gaussian 

distribution with variances x
2 and e

2, respectively. The

actual power of output difference between IP and FP 

system at output can be calculated straightforward as 
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When e << x, it gives
x

e
e πσ
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2 − . The first term of this 

approximation is the regular perturbation theory result in 

[2]. The second part is a higher order term on noise 

power, thus can be ignored. This example indicates that 

when an operator is continuous over its input and 

quantization noise, the decision-making errors will only 

cause higher order adjustments comparing with the 

perturbation result in [2] and [3]. We call this kind of 

decision errors weak decision errors, and the associated 

decision-making blocks are called weak decision-making 

blocks.

Fig. 2. An implementation of absolute value function. 

We define those decision errors that have non-

negligible effects on the system performance as strong 

decision errors, and their associated blocks as strong 

decision blocks. Examples of strong decision blocks 

include final slicers used in digital communication 

systems, comparators to decide which frequency offset 

should be used in a frequency synchronization unit, and 

so on. It is normally these blocks that system 

specifications should be set.  

Quantization effects caused by strong decision errors 

are difficult to analyze in general. Fortunately, due to the 

similar difficulty of analyzing their effects in IP system in 

the presence of physical noise, IP system are usually 

designed to have only a very limited number of strong 

decision blocks, and they can be clearly identified by the 

designers. We just need to make the probability of 

decision error at any of these blocks much smaller than 

that due to physical noise or other imperfections.  

2.3. Probability of decision errors due to quantization 

noises

Denote the IP input of a slicer as x, and the difference 

between FP and IP version of x as , that is, 

 = xFP – xIP = xFP – x. (3) 

Furthermore, in a complicated system, both the 

dependence of  and x on input signals are so mixed that it 

often suffices to consider them independent. In addition, 
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magnitude of  is small comparing with x since we need 

the FP system an approximation of the IP system. 

Let the probability density of x and  be px and p

respectively.  Then the FP decision may differ from IP 

decision according to the following formula 
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With preceding assumption, the probability above can be 

written as a double integral over x and ,
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Under the assumption that error magnitude is small 

comparing with signal x, the integral regarding px(x) is 

around px(0) in the integral, the probability becomes  
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where the last step follows directly from definition of 

expectation value.  

Similarly, the probability of error from decision of -1 

in IP system to decision of 1 in FP system is given by 
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Sum (4) and (5) together, we get the probability of 

decision error event between IP and FP system as 
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The two expectations in the parenthesis can be combined 

together as the expectation of |][|θθE . Therefore, the 

proceeding equation can be written as

|].[|)0())()(( θθEpxfxfP x ⋅=≠ IPSLFPSL  (6) 

However, due to Cauchy-Swartz inequality,  

.])|[|(|][| 2
12θθ θθ EE ≤

So (6) can finally be written into a form 

.][)0())()(( 2θγ θEpxfxfP x ⋅⋅=≠ IPSLFPSL  (7) 

where γ 1. Furthermore, γ is usually between 0.7 and 1 

for practical distribution of . For example, γ =

8.0/2 ≅π , γ = 87.02/3 ≅ , and γ =1 for cases that 

has zero-mean Gaussian distribution, zero-mean uniform 

distribution, and two point masses symmetric around 0, 

respectively.

Equation (7) shows that the decision difference 

between IP and FP system is proportional to the square-

root of the accumulated quantization error power ][ 2θE ,

also called mean-squared error (MSE) of .  The 

coefficients may vary a little in real system depending on 

how well the independence assumption at the beginning 

of this subsection applies. This quantity has been related 

directly to the fixed-point data types [2-3].  

3. APPLICATION IN FLOATING-POINT TO 

FIXED-POINT CONVERSION 

The accumulated quantization noise power MSE( ), is 

related to fixed-point data-types, namely fractional word-

lengths ,...W,W
2,Fr1,Fr and quantization modes ,..., 21 qq ,

are the following [2-3], 

,2CB)MSE(
Data Path}{
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,Fr+=

∈
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where coefficients B is a positive semi-definite matrix, 

denoted as B 0, and Ci ≥ 0. Vector µ  is related to fixed-

point data-types deterministically as shown in [2-3]. 

These coefficients in (8) can be found using simulations 

[3] in an FFC problem with careful setups of fixed-point 

data types. From (7) and the discussion in previous 

section, using large word lengths for the setups avoid 

strong decision errors in the simulations; thus, the 

coefficients can be obtained in the same way.  

Furthermore, since weak-decision-errors can be 

neglected in both simulation and analysis, we just need to 

regulate the chance of strong decision-errors. The 

quantization effects further caused by a strong decision-

error do not affect the system performance in an 

avalanche effect, because the IP system is tested to be 

robust under physical noise. So the probability of decision 

error at a strong decision-making block needs to be 

smaller than those caused by physical noise, which 

usually corresponds to BER specification, that is,  

,))()(( BERxfxfP ⋅<≠ αIPSLFPSL

where design parameter α is a positive guard fractional 

number. Substituting (7) into this inequality, we get 

.][)0( 2 BEREpx ⋅<⋅⋅ αθγ θ

Here ][ 2θθE is the same as MSE( ) in (8) since the effects 

of previous strong decision errors, which happen long-

time ago, have faded away. Rewriting this equation, we 

get  

.)
)0(

(MSE 2

xp
BER

⋅
⋅< γ

α  (9) 

A stronger version of (9) is by substituting the fractional 

number γ by 1. Furthermore, px(0) can be directly 

obtained by estimating the probability of decision 

difference between the IP system and an otherwise 

identical system, but with an additive noise n of power 

MSEn added at the input of the decision-making block. 

Denote this probability as ))()(( with IPSLIPSL xfxfP n ≠ ,

from (7), we get 
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where nγ depends only on the noise shape of n, as 

explained shortly after (7).  With (10), the right side of (9) 

is completely determined, denoted as A; therefore, (9) 

reduces to .0MSE <− A  This condition, associated with 

(8), again gives a constraint function on FFC problem in 

exactly the same form of those showed in [3], where no 

decision-making blocks have been considered. Thus, with 

a condition for each strong decision-making block, the 

FFC problem is re-formulated in the same form in [3]. 

The only change is some additional constraint functions. 

One BER type estimation is needed for each of this strong 

decision-making blocks—a very well-defined task. 

4. BPSK AND CORDIC EXAMPLES 

Our first example of weak decision errors whose 

quantization effects can be neglected are those happened 

in a CORDIC system with large number of rotation stages 

[4-5]. In fact, the errors at CORDIC output caused by 

decision errors can be essentially bounded by the residue 

error caused by finite rotation stages—one type of 

architecture imperfection that vanishes as the number of 

stages becomes large [5]. Furthermore, these errors shown 

in section 2.3, happen with very small probability. These 

two reasons ensure that the noise power at CORDIC 

output can be accurately predicted regardless of the 

possible internal decision errors [4]. 

Fig. 3.  A BPSK system. The adders, filter coefficients and gain 

output of the root-raised-cosine filters, as well as ADC, suffer 

quantization noises. 

Second, we validate our central result (7) and (10) 

using the binary-phase-shift-keying (BPSK) base-band 

transceiver in Fig. 3. Two root-raised-cosine FIR filters, 

each with 23 taps, act as band limiter and matched filter, 

respectively [6]. The slicer, as a demodulator, makes 

decisions on transmitted data based on the signal polarity 

of its input. Fig. 4 shows that the probability of decision 

errors in FP system, calculated as a function of MSE of 

quantization noise using the (7) and (10), indeed agrees 

well with simulation results with various word length 

realizations of all the fixed-point operators in the system. 

Fig. 4. Calculated curve is from (7), where γ =1 and )0(xp  is 

obtained from (10) with one BER type estimation using an 

additive i.i.d. sequence {0.1, -0.1} with equal probability.  

5. CONCLUSION 

Two examples were given to illustrate and support our 

analysis of the effect and probability of a decision error. 

Based on the result, we have extended our previous FFC 

methodology to include decision making blocks and 

decision errors due to quantization.  
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