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ABSTRACT 

A reduced complexity implementation of a soft Chase 
algorithm for algebraic soft-decision decoding of Reed-
Solomon (RS) codes based on the recently proposed 
algorithm of Koetter and Vardy is presented.  The 
reduction in complexity is obtained at the algorithm level 
by integrating the re-encoding and Chase algorithms and 
at the architecture level by considering a backup mode 
which sharply reduces the average computational 
complexity of the hybrid decoder.

1. INTRODUCTION 

Reed-Solomon (RS) codes have been widely used in a 
variety of communication systems, such as wireless local 
area networks (LANs), deep-space communications, data 
storage systems, etc., because of their ability to correct 
burst errors.  The rediscovery of low-density parity-check 
(LDPC) codes [1], which use channel soft information 
and iterative decoding to deliver impressive coding gains, 
has stimulated interest in considering them as 
replacements for RS codes.  However, their higher 
decoding complexity and large performance degradation 
on bursty channels, is partially responsible for the 
continuing dominance of RS codes as the error-correcting 
codes (ECCs) of choice. Recently, Koetter and Vardy [2] 
proposed an algebraic soft-decision RS decoding 
algorithm, which brings the error correction capability of 
RS codes much beyond half the minimum distance. The 
availability of a long sought soft-decision decoding 
algorithm for RS codes has spurred an interest in 
revisiting the conventional ECC architectures of current 
communication systems with the objective of using this 
soft-decision algorithm in place of the traditional hard-
decision RS decoders.  The main obstacle to its practical 
implementation is its large computational complexity.  

    In this paper we attack the complexity reduction 
problem in two ways.  First we discuss the 
implementation of a soft-decision RS decoder as the 
decoder of last resort and determine the necessary system 
modifications required to utilize the soft channel output 
information.  Given the higher complexity of soft-
decision RS decoding, this back up mode provides a good 
tradeoff between performance and complexity, since the 
soft-decision algorithm is only used when the hard-
decision algorithm fails. This hybrid scheme exhibits a 
large coding gain without substantially increasing the 
average decoding complexity. Secondly, we combine the 
soft Chase algorithm proposed in [3] with a re-encoding 
algorithm [4] to improve decoding performance and 
reduce the decoding complexity of the soft-decision 
decoder, respectively.  
    The paper is organized as follows. In Section II, the 
concept of algebraic soft-decision RS decoding is briefly 
described. Computation complexity of the hybrid system 
and architectures using the combined soft Chase and re-
encoding algorithms are given in Section III.  
Performance evaluation results are presented in Section 
IV. 

2. SOFT-DECISION REED-SOLOMON DECODING 

Let ( )qGF  be a finite field with 1+= nq  elements and 

denote the information sequence as ( )110 ,,, −kfff L .

The ( )knRS ,  codewords can be generated systematically 

by multiplying the information polynomial 

( ) 1
1

1
10

−
−+++= k

k xfxffxf L  by the generator 

polynomial ( ) ( )( ) ( )knxxxxg −α−α−α−= L

2 , where 

α is the primitive element of ( )qGF ; the coefficients of 

( ) ( ) ( )xgxfxc =  are the codeword c . An alternate way of 

generating RS codes consists of evaluating ( )xf  over the 

distinct elements of ( )qGF . The RS codes generated by 

the two methods can be transformed from one to the other 
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by simple multiplication by a nonzero matrix.  Hereafter, 
we will always consider the systematic RS codeword c ,

unless specified otherwise.  

2.1. Soft-decision decoding algorithms 

The soft-decision decoding algorithm proposed in [2] 
consists of four steps: multiplicity matrix calculation, soft 
interpolation, polynomial factorization and list decoding. 
Suppose a codeword c  is sent and the hard-decision 
channel output is ( )110 ,,, −=+= nyyy Lecy , with e

being the error vector.  In fact, the output of a noisy 
channel is “soft” information, which can be converted 
into a reliability matrix ],[ jiΠ , where each entry 

represents the probability of channel 
output iy j = , 1,,0 −= nj L ; 1,,0 −= qi L . Using this 

reliability matrix and a given parameter, the total 
multiplicity s , we can generate a multiplicity 
matrix [ ]jiM , .  Each nonzero entry in [ ]jiM ,  can be 

taken as a point ( )jy,ix tt == , whose value is tm .  The 

channel output information has been translated into a 

sequence of points ( ) 1
0},,{ −

=
N
tttt myx , where N  is not 

necessary to be equal to n .  By finding a bivariate 

polynomial ( )yxQM ,  that passes through 1
0},{ −

=
N
ttt yx

with variable multiplicity tm  [2] or constant multiplicity 

m  [5], and identifying all its factors of the form ( )xfy −
with ( ) k)xdeg(f < , the coefficients of the polynomials 

( )xf  will provide the decoding answers. Using the same 

notation as in [2], it has been shown that if the score of 
the multiplicity matrix ( )cS M  and the ( )1k,1 − -weighted 

degree of ( )yxQM , satisfy: 

( ),,deg)( 1,1 yxQcS MkM −=> δ                  (1) 

then the correct codeword can be found by list decoding.  
The sum of all multiplicities im  for each point pair 

1
0},{ −

=
N
ttt yx  is the total multiplicity s , which strongly 

determines decoding performance and complexity.   
    Notice that the most computational complex step of the 
soft-decision decoding algorithm is the soft interpolation 
step, which has been the focus of most of the research on 
reducing decoding complexity.  One such technique is the 
re-encoding (RE) scheme proposed in [4], which 
simplifies the polynomial interpolation by finding a 
modified polynomial ( )yxQ M ,'  that passes through at 

least k modified point pairs }0'{ , =ii yx , which can be 

implemented with a lower complexity. 

2.2. Chase-type algorithms 

A soft version of the Chase algorithm using simple bit-
flipping based on the Koetter-Vardy (KV) soft-decision 
algorithm has been recently proposed in [3].  By flipping 
the p  least reliable bits in a received sequence and 

generating a set of test patterns, we can obtain a set of 
multiplicity matrices for the soft-interpolation step, 
expanding the decoding list, and leading to improved 

decoding performance.  Since, among the p2  multiplicity 
matrices, only a few columns in each matrix are different, 
we only need to store one sparse matrix, and the 

difference information to generate the remaining 12 −p

matrices. 

3. REDUCED-COMPLEXITY SYSTEM 
ARCHITECTURES 

3.1. Backup mode and its complexity 

Common concatenated coding systems use a Viterbi 
algorithm (VA) as the inner decoder and an algebraic 
hard-decision RS decoding algorithm with error-
correction capability no more than ( ) 2/kn − and 

complexity near ( )nlognΟ . The soft-decision decoding 

algorithm provides an error-correction capability larger 

than nkn − [5], or even larger for low-rate codes [2]. 
However, the complexity of the soft-decision decoding 
algorithm is much higher. The complexity of 

interpolation-based RS decoding algorithms is ( )36 / kΟ δ
[5], and since 

( ) ( ) ( ) ( )∑ ∑

−

=

−

=
+−=−<

1

0

1

0
1112

q

i

n

j
ijijM mmkCkmin δ

the complexity of the KV algorithm is approximately 
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where the ijm ’s are the nonzero entries in the 

multiplicity matrix. From (2) we can see that the 

complexity of the KV algorithm is ( )3nΟ .  If we use the 

re-encoding algorithm, (2) can be simplified to 

( ) ( ) ,11

3
1

0

1

0 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−+ ∑∑∑

∈

−

=

−

= Lt

tt

q

i

n

j

ijij mmmmO

where L  represents the set of the k  largest entries in the 
multiplicity matrix M , and the complexity is reduced to 

( )( )3knΟ − .  Although the re-encoding algorithm 

provides a large complexity reduction, soft-decision 
decoding complexity is still substantially larger than 
hard-decision decoding, especially when the code length 
n  is large.  However, for applications such as magnetic 
recording systems, most of the errors in a given frame are 
less than half the minimum distance because high-rate 
RS codes are used at very high signal-to-noise ratios, as 
illustrated by the example in Fig. 1, and therefore it is not 
necessary to use the more complex soft-decision 
algorithm on every frame.  A hardware or software 
implementation of the backup mode shown in Fig. 2 is 
much more attractive than a strictly soft-decision 
decoding system.  In such a system, the soft-decision RS 
decoder is invoked only if the hard-decision RS decoder 
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fails, which can be determine in some way, e.g., a CRC 
check, and the coding gain of the soft decoder can be 
adjusted by changing the total multiplicity.  A possible 
implementation of this system could have a hardware 
hard-decision decoder and a hardware/software 
(depending on system latency requirements) backup soft-
decision decoder being executed at the same time, and if 
the output of the hard-decision decoder is correct, the 
operation of the soft-decision decoder is halted. 

3.1. Combined soft Chase and re-encoding algorithms 

Although the soft Chase algorithm described above 
provides a large decoding gain compared to the original 
KV algorithm, the decoding complexity is also very large, 
since the interpolation and factorization steps need to be 
executed for every test pattern. In order to reduce the 
complexity while maintaining the decoding gain, we 
propose a novel scheme, which combines the soft Chase 
algorithm with the re-encoding algorithm. The concept 
stems from the following observations: 1) In the soft 
Chase algorithm, we divide the sequence of polynomial 

interpolation points ( ) 1
0},,{ −

=
N
tttt mrx  into two groups: one 

includes 'kN −  points ( ) },,{ ttt mrx , whose symbols do 

not contain any bit involved in bit-flipping; another 
includes 'k  points ( ) },,{ ttt mrx , whose symbols contain 

bits involved in bit-flipping ( 'k  is related to p ).  2) In 

the re-encoding algorithm, we also divide the sequence of 

points ( ) 1
0},,{ −

=
N
tttt mrx  into two groups: one includes k

points ( ) },,{ ttt myx , with the largest multiplicity tm ,

which will be used to generate the modified 
set ( ) },0',{ ttt myx = ; another includes the remaining 

kN −  points ( ) },,{ ttt myx , (For details on the re-

encoding algorithm, please refer to [3], [4]). 
It is interesting that the points in the first group of the 

re-encoding algorithm can be made to belong to the first 
group of interpolation points for the soft Chase algorithm, 
if the parameter 'k  is properly chosen.  So for the soft 
Chase algorithm, we first generate a set of multiplicity 
matrices in accordance to the parameters s  and 'k , then 
the multiplicities are divided into two groups: one 

consisting of those multiplicities that are common to all 
matrices, another consisting of the multiplicities that are 
generated by each particular test pattern.  The first group 
can be further subdivided into two groups: the k  entries 
with the largest value will be labeled as Group 1, the rest 
as Group 2. The pattern dependent multiplicities will be 

labeled as Group 3, which consists of p2  subsets.  With 
this grouping of the interpolation points, it is easy to see 
that we can calculate the bivariate polynomial passing 
through all the points in Groups 1 and 2 only once, which 
significantly reduces the soft Chase algorithm complexity 
without loss of performance.  Since 'k  is usually very 
small, the complexity of finishing the interpolation step, 

by passing through each subset of points in Group 3, p2
times, is not much larger than implementing the soft 
interpolation step just once in the KV algorithm. When 
combined with the re-encoding algorithm [4], the 
decoding complexity can be further reduced.  The 
additional cost incurred by the soft Chase algorithm is 

that we need to perform p2  factorizations.  A 
factorization algorithm given in [6, p. 32] which utilizes 
the conventional hard-decision RS decoder to help 
perform the factorizations can be used here to reduce the 

factorization complexity. The implementation of p2
partial interpolation and factorization steps can be 
realized in parallel, so the decoding can be achieved with 
a small delay (Fig. 3(a)).  We can also trade off 
complexity for decoding delay by using only a single 
hardware/software core which implements the partial 
interpolation and factorization steps sequentially (Fig. 
3(b)). The significant performance improvement makes 
this combined algorithm attractive. A summary of the 
combined algorithm is as follows:  
Initialize: Channel output probabilities for each bit of 
received codeword. 
Step 1: Find the p  least reliable bits by searching the 

output probability sequence, and generate a set of 
reliability and multiplicity matrices corresponding to the 
test patterns; 
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Fig. 1.  Error distribution of RS (143,129) on an 
MEEPR4 channel with SNR=14.5dB.  

Fig. 2.  Block diagram of a backup soft-decision RS 
decoding algorithm. 

Fig. 3.  Block diagram of two different types of 
combined soft Chase decoders. 
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Step 2: For each multiplicity matrix, generate a sequence 

of points ( ) 1
0},,{ −

=
N
tttt myx , and assign them to their 

respective groups; 
Step 3: Generate the intermediate 

polynomial ( ) ( )yxQ M ,1 , which passes through points in 

Group 2, and store ( ) ( )yxQ M ,1 ;

Step 4:  Finish the polynomial interpolation step by 

making ( ) ( )yxQ M ,1  pass through points in Group 3 to 

get ( ) ( )yxQ M ,2 ; finish soft-decision decoding using the 

re-encoding algorithm. If it fails, go to Step 5; else go to 
End; 

Step 5: For the next test pattern, read ( ) ( )yxQ M ,1  from 

memory, then go to Step 4; 
End. 
    It should be mention here, that soft-decision decoding 
failure can be determined by checking if the decoded 
codeword satisfies (1). 

4. PERFORMANCE EVALUATIONS 

For our simulations, we used the proposed backup mode 
described in Section 3. All the errors beyond half the 
minimum distance in one block were decoded using the 
soft-decision RS decoding algorithm. Practical 
consideration dictates the use of a fairly small total 
multiplicity, which in turn, leads to a modest 
performance gain.  
    The performance of the soft Chase algorithm was 
evaluated, and the results are given in Figs. 4 and 5 for a 
Rayleigh fading channel and a magnetic recording 
channel, respectively.  In Fig. 4, the RS (63, 47) code 

with 6=p , i.e., 642 =p test patterns is used on an 

uncorrelated fading channel with total multiplicity s=158. 
The soft Chase algorithm provides almost a 1-dB gain 
over the Chase II algorithm [7], a 2-dB improvement over 
the KV algorithm and a 4-dB gain over traditional hard-
decision decoding algorithms. It is also shown that 
increasing the total multiplicity will increase the error 
correction capability of both the soft Chase and KV 
algorithms.  Similar results can be observed for magnetic 
recording systems, and are illustrated in Fig. 5. 

5. CONCLUSIONS 

An implementation of a soft-decision RS decoding 
algorithm combining a soft Chase algorithm with a re-
encoding algorithm in a backup mode was proposed and 
the modification of current RS-coded ECC systems 
outlined. This ECC architecture has the advantage of 
using soft-decision decoding to improve current system 
performance without largely increasing hardware 
complexity.  
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Fig. 4.  Performance of a soft Chase algorithm on an RS 
(63, 47) code over an uncorrelated fading channel with 
different total multiplicities, p = 6. 
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Fig. 5. Performance of a soft Chase algorithm on an RS 
code (137, 117) over an equalized MEEPR4 channel, 
Sc=2.967, p=4. 
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