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ABSTRACT

Turbo codes have revolutionized the world of coding theory with their
superior performance. However, the implementation of these codes is
both computationally and memory-intensive. Recently, the sliding win-
dow (SW) approach has been proposed as an effective means of reduc-
ing the decoding delay as well as the memory requirements of Turbo
implementations. In this paper, we present a sub-banked implemen-
tation of the SW-based approach that achieves high throughput, low
decoding latency and reduced memory energy consumption. Our con-
tributions include derivation of the optimal memory sub-banked struc-
ture for different SW configurations, study of the relationship between
memory size, energy consumption and decoding latency for different
SW configurations and study of the effect of number of sub-banks on
the throughput and decoding latency of a given SW configuration. The
theoretical study has been validated by SimpleScalar for a rate 1/3 MAP
decoder.

1. INTRODUCTION

Turbo codes [1] have become very popular and have been adopted in
mobile standards such as 3GPP for IMT-2000 and WCDMA for their
superior error correcting capability. The superior performance is due to
the combination of parallel concatenated coding and iterative decoding,
which results in very high complexity. Innovations at the algorithmic
and architectural level are needed in order to design low-power high-
throughput Turbo decoders for mobile systems.

The Turbo decoding algorithm is both computation and memory
intensive. In order to reduce the power consumption, several architec-
tures have been proposed which implement approximate versions of the
Turbo decoding algorithm [2, 3, 4]. In order to reduce the decoding la-
tency and increase the throughput, the sliding window (SW) approach
has been used in [5, 6, 7, 8, 9]. The SW approach has also been used
to optimize the memory for MAP Turbo decoders in [8] and SISO-APP
decoders in [9].

All of the existing work on Turbo decoder architectures assume a
monolithic memory structure. However, memory sub-banking is an ef-
fective means of achieving high throughput, as was demonstrated in
[10] for the Viterbi decoder. In this paper we present a novel mem-
ory sub-banking scheme for high throughput SW-based MAP Turbo
decoder. Our contributions are as follows.

� Derivation of the optimal memory sub-banking structure (num-
ber and size of each sub-bank) that supports very high throughput
and low decoding latency for different SW configurations.� Study of energy consumption, decoding latency and memory
size for different SW configurations.

� Study of the relationship between number of sub-banks, through-
put and decoding latency for a given SW configuration.

This research was supported by the Consortium of Embedded and InterNet-
working Technologies (CEINT) at ASU.

� Comparison of the energy consumption for different SW config-
urations when implemented on cache and sub-banked memory
structures.

Such an analysis will aid the designer in choosing the optimal mem-
ory configuration given the constraints on coding performance, memory
size, number of sub-banks, throughput, decoding latency and energy
consumption.

The rest of the paper is organized as follows. Section 2 gives a brief
description of MAP algorithm and application of sliding window ap-
proach. Section 3 describes the proposed optimal sub-banking structure.
Section 4 presents through simulations the trade-offs between through-
put, memory size, decoding latency and energy consumption. Section 5
concludes the paper.

2. THE MAP ALGORITHM WITH SW APPROACH

Fig. 1 shows the diagram of a Turbo encoder and decoder. The Turbo
encoder consists of two recursive systematic convolutional (RSC) en-
coders and a random interleaver. The Turbo decoder consists of two
SISO decoders (corresponding to the two component RSC encoders),
an interleaver and a de-interleaver placed between the two decoders.
The first SISO decoder generates soft outputs, which are interleaved
and used to produce an improved estimate of the apriori probabilities of
the information sequence for the second decoder. Similarly, the output
of the second SISO decoder is fed to the first SISO decoder through
de-interleaver.
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Fig. 1. Basic Turbo encoder and iterative decoder

In the Turbo decoder, the MAP algorithm minimizes symbol (or
bit) error probability. For each transmitted symbol, it generates a hard
estimate and a soft output in the form of a posteriori probability (APP)
based on the received sequence [11]. The log-likelihood � � � 	 � repre-
sents the soft output of the MAP decoder. It can be used as an input
to another decoder in a concatenated scheme or in the next iteration in
an iterative decoder. In the final operation, the decoder makes a hard
decision by comparing � � � 	 � to a threshold equal to zero. � � � 	 � is cal-
culated in terms of 
 , � , and � , where 
 is the forward path metrics, �
is the backward path metrics, and � is the branch metrics.
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where �
�

is the state at time 4 6 7 , � is the state at time 4 , 8 :	 / ; � = / 7
is the set of transitions > 	 + - � �

� A
> 	 � � that are caused by input� 	 � ; . The forward recursion parameter 
 and the backward recursion
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parameter � can be defined as
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where � � is the number of states. The boundary conditions for � are
� � � ! � 	 � and � � � � � 	 ! for � �	 ! and for � are � � � ! � 	 � and
� � � � � 	 ! for � �	 ! . � is the branch metric parameter.

In the standard MAP algorithm, the decision delay is equal to the
received frame size. For large frames, the memory required for the de-
coder implementation is also excessive since the forward and backward
recursions are performed on the whole frame. For a frame of size � , the
decoder needs to store � survivors and � survivor path metrics during
both the forward and backward recursion calculations.

The sliding window approach partly eliminates the large storage
problem of the Turbo decoder by initializing the � or � metrics at an
intermediate point instead of at the end of the frame. Assume that the
required decision depth for a single component convolutional code is�

. The decoder then does not need to start from the initial node; it can
start at any node and after depth

�
, the decision is likely to be made as

reliably as starting from the initial node.
The sliding window approach can be applied to � � � either � or �

metric calculation referred to as the single flow structure and � 	 � both �
and � metric calculation referred to as the double flow structure [8]. Let
the input data frame of length � be divided into blocks

$ �
� % . Consider

the case when � metric calculation is done by sliding window approach
and � calculations are done in regular way as shown in Fig. 2. Define� as the ratio of actual metrics calculated per dummy metric; � 	 � � ,
where � and  are integers and � � is an irreducible rational number.
We divide the input data into blocks such that the actual and dummy
metric calculations are performed on one or more blocks. If

�
is the

decision depth required for reliable metric calculation using the sliding
window approach, then the number of actual calculations for

�
dummy

calculations is � �
(by definition). To make both

�
and � � 	 � # � a

multiple of block size, each block
$ �

� % is of size # � .
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Fig. 2. Single flow structure
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Fig. 3. Double flow structure

The path metric calculations and extrinsic output calculations can
be made parallel by carefully selecting which operations are done on
which blocks. In Fig. 2,

�
� represents one block of input data of size# � , and % ' represent a time slot which is defined as the time required

for processing a block of data. � � ) * is the dummy � calculation done on�
� � � and is required for calculating � � . Fig. 2(a) represents the case

for � = 1, where the number of dummy � calculations is equal to the
actual number of � calculations and Fig. 2(b) shows the structure for� 	 	 , where the number of actual � calculations is double the number
of dummy � calculations.

To determine the metric calculations and extrinsic output that are
done simultaneously, select a time slot % ' . For � 	 � (see Fig. 2(a)),
in time slot % � , the calculation of � , ) * is done on block

� .
, � , calcu-

lations on block
� , , and � � and / 1 � calculations on block

� � . Thus

2
processing units are required to work on different

�
� ’s. Clearly, the

blocks that will be operated on in parallel will depend on the value of � .
For the double flow structure, assuming the number of process-

ing units is twice as large, we can determine the path metric calcu-
lations and extrinsic output calculations that are done simultaneously.
In the double flow structure shown in Fig. 3, sliding window is ap-
plied on � metrics calculation on lower half of the received data (blocks�

� � � � � � � � � � 4 5 � � ) and on � metrics calculation on upper half of the
received data (block

� 4 5 � � � � � � 7 � � ). For � 	 � (see Fig. 3(a)), in
time slot % � , the calculation of � , ) * is done on block

� .
, � , on block� , , � � and / 1 � on block

� � , � 7 � � ) * on block
� 7 � , , � 7 � � on block� 7 � � , � 7

and / 1 7
on block

� 7
.

3. SUB-BANKED STRUCTURE FOR TURBO DECODERS

For a given � , the choice of memory configuration (number and size of
banks) affects the throughput. Our aim is to design the optimal memory
configuration for an architecture that achieves maximum throughput.
Maximum throughput corresponds to the case where the output genera-
tion rate is equal to the maximum possible input data rate, and there is
no need to store the input data. The optimal memory configuration is
one that requires minimum total memory and minimum number of sin-
gle port memory sub-banks. We choose single port sub-banks since it is
cheaper both in terms of access time and energy compared to multi-port
structures. All throughput calculations have been normalized with re-
spect to the throughput of the Turbo decoder using optimal sub-banked
structure for � = 1.
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Fig. 4. Optimal memory layout for � = 2

3.1. Optimal sub-banking structure for � 	 � �
We assume that each data block of size # � is stored in one sub-bank. For

a frame length of � , we have 9 	 ; �
# such data blocks. In order to do�

dummy � metric calculations,  sub-banks are accessed. There are� actual � calculations per  dummy � calculations. Thus for � and �
metric calculations of � blocks, � sub-banks are accessed.

The � metric calculations starts (in reverse order) after � metric
calculations finishes. Thus we store the � metrics in � sub-banks for
the � calculations. One more sub-bank is needed to store the newly
calculated � metrics (since it is calculated continuously). Thus a total
of < > 	 � � @ � � sub-banks are required for � metric calculations and
storage. The number of sub-banks to store data is < * B � B 	 � @ 	  @ � .
This has been derived by mathematically analyzing the lifetime of the
blocks. The derivation has been omitted due to lack of space.

Total memory: Since the data memory sub-bank has to store two
incoming state metrics, and the � memory sub-bank only needs to store
one value, for word length F � , the � memory is of size < > G F � 	# � � � @ � � F � and the data memory is of size < * B � B G 	 F � 	 # � � � @

	  @ � � 	 F � . The total memory size is given by

% ( � L � M O M ( Q S 	 � 2 � @ V  @ 2 �
 W

�
W F � (4)

Graphical representation: The number of sub-banks and the sub-
bank size is shown in Fig. 5 and Fig. 6 respectively. Note that the
sub-bank size for all � that have the same  is the same. Thus the sub-
bank size for � 	 �, �

.
, � Y , � � � is the same and is half of the sub-bank
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Fig. 7. Total memory size for optimal configuration

size for � � � � � � � � � � � . The total memory size required for optimal
configuration is shown in Fig. 7. The total memory increases as �
increases since it is a function of the number of sub-banks and the sub-
bank size. However, the memory size for � � � and � �

�
� or � � �

and � � � � is the same. The memory size for � � � and � �
�
� is

same because the sub-bank size for � � � is double the sub-bank size
required for � �

�
� , and the total number of sub-banks required for� � � is half of the number of sub-banks required for � �

�
� .

3.2. Data flow for the optimal sub-banked structure for � � �
Fig. 4 shows the dataflow of the optimal sub-bank structure for single
flow with � = � . The optimal configuration consists of 8 memory sub-
banks: 5 sub-banks are needed for storing input data (shown under data
memory column) and 3 sub-banks are needed for � metrics (shown un-
der � memory column). The block

	
� represents input data block being

stored in the memory at time slot 
 � . � � represents forward recursion
metrics calculated on data block

	
� . � � 
 � represents the dummy � cal-

culations required for backward recursion metrics � � and are done on
block

	
� � � . As soon as � � 
 � calculation is finished, � � metrics is cal-

culated on sub-bank
	

� . � � for sub-bank
	

� is defined as � � � and is
calculated using � � and � � . We do not require any sub-bank for storing
� � 
 � because we are only concerned with the last dummy metric value
and not the intermediate ones. There is also no need to store � � as it
is immediately used up for the calculation of � � � . As the extrinsic in-
formation for a sub-bank � is finished, � metric for that sub-bank, � � ,
is used up completely. As soon as any data or � values are used, they
become obsolete and are replaced by the new values. A “+” sign show
a write pointer while a “-” sign shows a read pointer in Fig. 4. The
total number of � and � calculations are same as the input data size. �
dummy calculations are done in every other time slot.

The dataflow is pipelined: an output is generated for every input
after an initial latency. In Fig. 4, consider the scenario where

	
� and	 � have already been loaded into sub-bank 0 and 1. At time 
 � , � �

is computed for
	

� . At the same time,
	 �

is read into sub-bank 2 for
future processing. At time 
 � , � � is computed for

	 � , � � 
 � is calculated
on

	 �
, and input data

	 � is read into sub-bank 3. At the end of 
 � , we
have sufficient reliable metrics to start calculating � � and generating
output � � � . So, the decoding latency for optimal configuration of � �

� is � time slots ( 
 � and 
 � ). Starting from 
 � , we generate an output
for every input data. After � � � is generated, � � and

	 � are no longer
necessary and the new input data block

	 �
replaces

	 � in sub-bank1 in
time slot 
 �

. Since an output is generated in every cycle after 
 � , there
is always a sub-bank whose data can be replaced. Thus no additional
sub-banks are needed and 5 sub-banks are sufficient to store the input
data.

4. SIMULATION RESULTS AND TRADEOFF ANALYSIS

4.1. Simulation setup
A rate �� MAP Turbo decoder with an interleaver size � � � � 
 

was considered in our simulation. Decision depth,

�
, was taken to

be
�


 . Each stage contains 4 states and 2 branch metric paths con-
verging to each state. The sub-banked structures were simulated using
SimpleScalar [12] to obtain the number of accesses to each bank. The
throughput and decoding latency values that were obtained theoretically
were also verified using SimpleScalar. To compare the energy reduction

using the sub-banked structure, the monolithic cache memory structure
was simulated using SimpleScalar based Wattch tool [13].

4.2. Throughput and decoding latency for optimal configuration
Fig. 8 shows the throughput and decoding latency as a function of � .
Note that the throughput is always 1 irrespective of the value of � . This
is by definition; the sub-banked memory structure was designed such a
way to achieve throughput of 1 in all cases.

The decoding latency, defined as the time lag between the start of �
metric calculation and extrinsic information calculation, increases with� . This is because as � increases, dummy � calculations start late and �
metrics are stored for longer time duration. The decoding latency is also
affected if the number of sub-banks is smaller than that of the optimal
configuration: it either remains same or increases with decrease in the
number of sub-banks.

4.3. Tradeoff analysis
For a given a value of � , we have derived the optimal number of sub-
banks corresponding to which the memory requirement is the lowest
and the throughput (normalized) is 1 in section 3.1. In this section, we
evaluate the relationship between total memory size, number of sub-
banks and throughput. For example, for � � � , the optimal number
of sub-banks is � . But the number of sub-banks can be reduced to

�
without decreasing the throughput. However, reduction in the number
of sub-banks comes with an increase in the size of each sub-bank. As
a result, the total memory size increases to approximately � � � times the
optimal configuration (see Fig. 9). The total number of sub-banks can
be further reduced to � by keeping the same sub-bank size (decreasing
the total memory requirement). But this comes at the expense of the
throughput dropping by � � � times. If the number of sub-banks is fur-
ther reduced (can be made as low as 1), either the total memory size
increases or the throughput decreases. Fig. 9 and Fig. 11 shows the to-
tal memory size and decoding latency respectively as a function of the
number of sub-banks for � � � . Fig. 10 describes the throughput for �
= 2. Note that the throughput decreases to less than �� if the number of
sub-banks is

�
or lower.

If the number of available sub-banks is larger than the optimal num-
ber, a higher throughput can be achieved by applying the double flow
structure [8]. Take the example for � � � ; a �

�
� � � � � � sub-banked

structure is the optimal double flow structure that gives double through-
put (compared to the optimal single flow structure). In fact, for � � � ,
we can get double throughput as long as the number of sub-banks is
greater than or equal to 12. The total memory increases if the number
of sub-banks are reduced from 16 to 12 (see Fig. 9).

4.4. Energy consumption
Next, we evaluate the energy consumption of a cache based memory
structure and sub-banked memory structure for different values of � .
Using SimpleScalar based Wattch tool, we get the energy consumption
profile of the MAP decoder for the following cache memory structure:
L-1 data cache size 128:32:4 (128 is the number of sets, 32 bytes is
the line size and 4 is set associativity). L-2 data cache 1024:64:1, L-
1 instruction cache 512:32:1 and L-2 instruction cache similar to the
L-2 data cache. Figure 12 describes the memory energy, datapath en-
ergy and total energy for different values of � . As � increases, the total
energy, memory energy and datapath energy decreases proportionally.
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This is because as � increases, the number of dummy calculations de-
creases, and the number of total calculations decreases.

Fig. 13 shows the energy consumption of the optimal sub-banked
memory structure as a function of � . The memory energy model used
assumes that as the sub-bank size doubles, the access energy increases
by

� � � [14]. The trend of the energy for sub-banked structure will
be same as Fig. 12 if we use equal sub-bank of size

�
as shown by

dotted line in Fig. 13. For � � � � , the size of each data sub-bank is

� � �
�

� and therefore, the memory access energy decreases as � increases.

The memory energy for � � �� �
	
� � 
 � is therefore less than the memory

energy for � � � � � � �
. As � increases, the number of dummy metric

calculation decreases. Thus for � � � , the memory energy for � � � is
lower than � � � , the memory energy of � � 
 � is lower than � �

	
�

etc. For � � � , the number of dummy metric calculation increases and
memory access energy decreases. So the total memory energy does not
vary to a large extent.
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The number of accesses in both the cache and sub-banked structure
is same for a specific value of � . Since the sub-bank memory size is
smaller than the cache memory size, the total memory energy for sub-
banked structure will be significantly less than the cache structure.

By using sub-banked structure, we have demonstrated that as � in-
creases, the memory energy decreases while maintaining the normal-
ized throughput � � . This is quite different from [8], where as � in-
creases, normalized throughput decreases and energy increases. We
believe that the difference is because of the memory configuration: im-
plementation of single port sub-banked memory structures here versus
monolithic memory in [8].

5. CONCLUSION

The aim of this work was to derive the optimal memory sub-bank struc-
ture for the Turbo decoder that achieves maximum throughput. The
optimal structure for any � was derived theoretically and verified using
SimpleScalar. The relation between memory size, throughput, decoding
latency and energy was also studied.

The value of � is typically determined from the coding performance
requirement of the Turbo code since as � increases, the performance de-
grades. The value of � can also be determined from the hardware spec-
ification. For instance, if the number of sub-banks is given, or the total
memory size is given, we can choose � from Fig. 5 - Fig. 7. The choice
is however complicated by the fact that as � increases, the decoding la-
tency increases and the memory energy decreases. Our analysis helps

determine the optimal value of � by balancing the hardware, latency and
energy requirements and then determining the optimal sub-bank struc-
ture for that value of � .
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