
PIPELINING OF PARALLEL MULTIPLEXER LOOPS AND DECISION FEEDBACK
EQUALIZERS

Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

Email: parhi@ece.umn.edu

ABSTRACT

High speed implementation of a DFE (decision feedback

equalizer) requires reformulation of the DFE into an array

of comparators and a multiplexer loop. The throughput of

the DFE is limited by the speed of the multiplexer loop. This

paper proposes a novel look-ahead computation approach

to pipeline multiplexer loops. The proposed technique is

demonstrated and applied to design multiplexer loop based

DFEs with throughput in the range of 3.125 - 10 Gbps.

1. INTRODUCTION

Decision feedback equalizers (DFEs) are widely used in

various communication systems. High speed applications

requires reformulation of a DFE into an array of compara-

tors and a multiplexer loop [1, 2]. The throughput of the

DFE is limited by the the speed of the multiplexer loop. For

example, a 2-tap DFE in Fig. 1(a) can be reformulated as an

array of 4 comparators and a 4-to-1 multiplexer loop. The

iteration bound of this structure is
� � � �

(the computation

time of a 2-to-1 multiplexer), which is about 0.2 ns in 0.13� 	 CMOS technology.

By using the same method to the 2-tap DFE, a 6-tap

DFE can be implemented by using 64 comparators and a

64-to-1 multiplexer loop. Fig. 2 shows the block diagram

of the 64-to-1 multiplexer loop. It requires 32 instances of

2-to-1 multiplexer A, 16 instances of B, 8 instances of C, 4

instances of D, 2 instances of E and 1 instance of F blocks.

There are a total of 63 2-to-1 multiplexers. The iteration

bound of the 64-to-1 multiplexer loop is
� � � �

. However, to

achieve this bound, either multiplexer F or the delay which

is directly connected to the output of F will have a large fan-

out. The computation time of multiplexer F is about twice

that of a multiplexer which is not heavily loaded, resulting

in an iteration bound of � � � � �
, which is about 0.4 ns. Re-

timing and unfolding techniques cannot solve the problem

THIS RESEARCH WAS CARRIED OUT WHILE THE AUTHOR

WAS WITH BROADCOM CORP., IRVINE, CA.

since the iteration bound is a fundamental limit [3]. If the 6-

tap DFE is implemented in this way, it can at most achieve

a throughput of 2.5 Gbps. Therefore techniques must be

developed for further pipelining and parallel processing of

nested multiplexer loops for implementation of DFEs for

speeds beyond 2.5 Gbps.

D

D

12 dd

y(n) a(n)

−

(a) A 2-tap DFE

D

D

y(n)+ d1 d+ 2 00

MUX

11d

01

10

a(n) a(n−1)

y(n)− d1

d

− 2

y(n)− 21 d+

y(n)+ d1 d− 2

(b) The reformulated 2-tap

DFE

Fig. 1. A 2-tap DFE and its reformulated form

1

0

A

D D D D D D

N

P

0 D 1

1

0

1

0

C 1

0

0

E 1

F

K

B

I

J

L

M

Fig. 2. A 64-to-1 multiplexer loop

In the past, look-ahead computation approaches were

successfully applied to pipeline feed-forward adaptive lat-

tice filters [4], linear time-invariant recursive filters [5], and

add-compare-select operations in Viterbi decoders [6, 7, 8,

9]. Look-ahead computation was also used in multiplexer-

based fast adders [10] and algorithms containing quantizer

loops and piecewise-linear devices [1, 2]. However, the use

of look-ahead computation in nested multiplexer loops is

not straightforward, and has so far not been studied. This

paper explores the problem of pipelining nested multiplexer

V - 210-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

loops by using look-ahead computation.

The rest of the paper is organized as follows. In section

2, we study the problem of pipelining and look-ahead de-

sign for nested multiplexer loops. In section 3, the proposed

approach is applied to the high speed design for DFEs with

multi-Gigabit throughput.

2. PIPELINING NESTED MULTIPLEXER LOOPS
BY LOOK-AHEAD COMPUTATION

This section extends the look-ahead techniques to pipeline

nested multiplexer loops. We start with 2-stage pipelining

of a 2-to-1 multiplexer loop. Next we study the problem of

pipelining a 4-to-1 multiplexer loop which contains nested

feedback loops. It is shown that pipelining by a certain form

of look-ahead can successfully pipeline a nested multiplexer

loop by an arbitrary number of stages.

2.1. 2-to-1 Multiplexer Loop

Fig. 3(a) shows a 2-to-1 multiplexer loop. The output, � �
of the circuit is given by:

� � � � � � � � � � � �� � � � (1)

The iteration bound of the circuit is
� � � �

. From (1), we

have the output at time � � � described by:

� � � � � � � � � � % � � � � �� � � % � (2)

To pipeline the 2-to-1 multiplexer loop, we need to create

additional delays in the loop by using look-ahead, which

can be done by substituting equation (2) into equation (1).

We can obtain:

� � � * � + � � � % � * � + % �� � � % / (3)

where * � + � � � � � � � � � �� � � and * � + % � � � � � � �
� � �� � � . The resulting look-ahead structure is shown in

Fig. 3(b). Its iteration bound is 0 1 2 4% . It improves the itera-

tion bound by a factor of 2. The hardware overhead is only

two 2-to-1 multiplexers.

2.2. 4-to-1 Multiplexer Loop

Fig. 4(a) illustrates a 4-to-1 multiplex loop. Its output can

be expressed as:

� � � 5 � � � � � % � � � �� � � % 8 � � �
� 5 ; � � � � % � < � �� � � % 8 �� � � � (4)

As shown in Fig. 4(a), there are three 2-to-1 multiplex-

ers and two delays. Assume the computation time of the

inner multiplexer is 0.4 ns (i.e., it is highly loaded) and the

other two multiplexers each have a computation time of 0.2

0

1
n−1a

D

n

nA

B

na

(a) Original loop

B

A

n−1

n−1

1

0

1

0

1

0

an

2D

B

An

n

B

An

n

n−2a

(b) Pipelined design

Fig. 3. A 2-to-1 multiplexer loop and its 2-stage pipelined

design

ns. This would be true if this 4-to-1 multiplexer was part of

a much larger nested multiplexer loop. The iteration bound

of the 4-to-1 multiplexer loop is then 0.4 ns.

To improve the iteration bound, we can apply look-ahead

to equation (4) by substituting its version at time � � � into

itself, we have:

� � � ? * � + � � � @ � * � + % �� � � @ A � � � %
� ? * � + @ � � � @ � * � + C �� � � @ A �� � � % / (5)

where * � + � � � � � � � ; � �� � � , * � + % � � � � � � �
; � �� � � , * � + @ � � � ; � � � < � �; � � , and * � + C � � � < � � �
< � �< � � . The resulting look-ahead architecture is shown in

Fig. 4(b). It consists of a 4-to-1 multiplexer loop and a 1-

level look-ahead network as shown in the dashed box. The

topology of the 4-to-1 loop is the same as that of the orig-

inal 4-to-1 multiplexer loop except that the inner loop now

contains two delays. The iteration bound of the architecture

becomes 0.2 ns. The hardware overhead is only 4 2-to-1

multiplexers.

1

0

a

E

F

n

n
D

Cn

n

B

An

n

a

a an n−1

n−1

n−2

1

0

1

0

D

D

(a) Original loop

0

1

0

1

2D

1

0

0

0

C
1

0

D

a

Cn

a

a

n−3

n−2

n

An 1

0

n

An

B

1

D

Bn

n

1

Dn

n

Dn−1

Cn−1

Bn−1

An−1

(b) Look-ahead design

Fig. 4. A 4-to-1 multiplexer loop and its 2-stage look-ahead

design

The look-ahead technique can be easily extended to larger

V - 22

➡ ➡

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

A

n

1

0

1

0

G

D
n

H
n

C
n

G
n

B
n

F
n

A
n

E
n

A
n

E
n

n−1

B
n−1

C
n−1

D
n−1

G
n−1

E
n−1

F
n−1

H
n−1

D

B
n

F
n

D

C

n

D
n

H
n

a

2D

n−4

1

0

a
n

a
n−2

a
n−3

Fig. 5. 2-stage pipelining of an 8-to-1 multiplexer loop

1

0C

A
n

n

D

B
n

n
0

1

D

B
n

n
0

1

1

0C

A
n

n

D
n−1

C
n−1

B
n−1

A
n−1

0

0

n−2
A

B
n−2

C
n−2

0

1

0

1

0

0

n,1f

f

0

A

C
n−3

g
n,1

1

n,2

f
n,3

f
n,4

D
n−3

1

0

1

1

1

0

n−2

n−3

B
n−3

1

0

1

n,2

D

4D

a
n

D

g

1

1

0

g
n,4

g
n,3

Fig. 6. 4-stage pipelining of the 4-to-1 multiplexer loop

multiplexer loops. Fig. 5 illustrates a 2-stage pipelined de-

sign of an 8-to-1 multiplexer loop. Its iteration bound is

0.2 ns and the hardware overhead is 8 2-to-1 multiplexers.

The look-ahead technique can also be used to achieve multi-

stage pipelining of multiplexer loops. Fig. 6 shows a 4-

stage pipelined design for the 4-to-1 multiplexer loop. Its

iteration bound is only 0.12 ns. Like the 2-stage pipelined

design, it also has a regular structure. It consists of a 4-to-1

multiplexer loop and a 3-level look-ahead network. Each

level contains 4 2-to-1 multiplexers. In general, for an L-

to-1 multiplexer loop, its M-stage pipelined design consists

of an (� � �) level look-ahead network and an L-to-1 mul-

tiplexer loop. The difference between the original L-to-1

multiplexer and the L-to-1 multiplexer loop in the look-

ahead design is that the number of delays of the innermost

loop in the latter becomes M. Each level of the (� � �) level

look-ahead network consists of L multiplexers. Thus, the to-

tal overhead is � � � �
 � multiplexers and the total number

of multiplexers in the M-stage pipelined L-to-1 multiplexer

loop is � � � � . The iteration bound is � � � � � � � � � � � � !"
� � � � � � # � .

B1

B3

B2

B0

C1

C3

C2

C0

D1

D3

D2

D0

E1

E3

E2

E0

F1

F3

F2

F0 D

D

D

D

D

A0

A2

A3

A1

D

D

D

Fig. 7. A 4-unfolded design for a 3-stage pipelined 64-to-1

multiplexer loop

3. APPLICATIONS TO MULTI-GIGABIT DFE
DESIGN

The proposed pipelining technique has been applied to de-

sign a 4-unfolded 6-tap DFE for a backplane receiver appli-

cation requiring a throughput of 3.125 Gbps. The required

clock period for the DFE is 1.28 ns. The throughput of the

DFE is limited by a 4-unfolded 64-to-1 multiplexer loop.

Before using the look-ahead technique, the 4-unfolded DFE

has an iteration bound of 1.6 ns (% ') * + - / 0 % ') ' 3 5) 0
� 5 8 ns) and a maximum throughput of 2.0 Gbps (which in-

cludes 0.4 ns clock setup/hold time and margin).

To meet the design requirement, we used a 3-stage pipelined

64-to-1 multiplexer loop. The iteration bound is � � � � ; < � �= � � � � � ; < # � '
3 5) 0 3 5 � E G ns. Fig. 7 shows a 4-folded design for the 3-

stage pipelined 64-to-1 multiplexer loop. Its iteration bound

is % ' 3 5 � E G 0 3 5 E ns. However, it has a long critical

path as shown by the dashed line in the figure. The criti-

cal path consists of 5 normally loaded 2-to-1 multiplexers

and two heavily loaded multiplexers. The computation time

is G ' 3 5) O) ' 3 5 % 0 � 5 S ns. It does not meet the design re-

quirement of shorter than 0.88 ns (with a margin of 0.4 ns).

Thus, retiming is needed to reduce the critical path of the

circuit. After applying the retiming algorithm [11] to the

4-unfolded 3-stage pipelined 64-to-1 multiplexer loop, we

obtain the retimed circuit as shown in Fig. 8. The retimed

circuit has seven critical paths as shown by the dashed lines.

The computation times of critical paths 1 and 2 are 0.8 ns

(i.e., % ' 3 5) 0 3 5 S ns). The computation times of critical

paths 3, 4, 5, and 6 are also 0.8 ns () ' 3 5) O 3 5 % 0 3 5 S
ns). Critical path 7 consists of two heavily-loaded mul-

tiplexer and its computation time is also 0.8 ns. The re-

ceiver with the pipelined 6-tap DFE can now be clocked

with a clock period of 1.28 ns with enough operating mar-

gin (0.48 ns) for the clock setup/hold etc, achieving a rate

of 3.125 Gbps. The total number of 2-to-1 multiplexers is

% ' � 8 % ' [� �
 0 E 8 % . The parameters for the 3.125 Gbps

DFE design are listed in Table 1.

V - 23

➡ ➡

D

A1

A3

A2

A0

critical path 1
critical path 2

critical path 3

critical path 4

critical path 5

critical path 6

critical path 7

D0

E1

E3

E2

E0

F1

F3

F2

F0D2

B1

B3

B2

B0

C1

C3

C2

C0

D1

D3
D

D

D

D

D D

D

D

D

D

D

D

D

D

Fig. 8. Retimed 4-unfolded look-ahead for the 64-to-1 mul-

tiplexer loop

Table 1 also shows that the same technique can be used

to design 5Gbps and 10Gbps 6-tap DFEs. For the 5 Gbps

design, the unfolding level is 8 and the required pipelining

level is 5. The iteration bound of the 8-unfolded 5-stage

pipelined 6-tap DFE is 1.12 ns (8* � � � � � 	
 � � � � � ��
� � � � � 	
 � � ns), and

the achievable least critical path after retiming is 1.2 ns. The

number of multiplexers needed is � � � ! # % ') + , - / ' ' / .

For a 16-unfolded DFE, we can achieve a throughput of 10

Gbps with pipelining level 15. The number of multiplexers

is + ! � � ! # % + ') + , - + ' : # # . From the table, we can see

the hardware overhead is linear with the pipelining level.

Table 1. 3.125, 5 & 10 Gbps 6-tap DFE Design

Actual

Unfolding Pipe- Clock Iteration Least Number

Speed Level lining Period Bound Critical of

Level (ns) (ns) Path Muxes

(ns)

3.125G 4 3 1.28 0.7 0.8 764

5G 8 5 1.6 1.12 1.2 2552

10G 16 15 1.6 1.12 1.2 15344

4. CONCLUSION

This paper has extended the look-ahead computation tech-

nique to pipeline nested multiplexer loops. This approach is

suitable for high-speed dedicated implementations for nested

multiplexer loops. The hardware overhead is linear with

the level of pipelining. The proposed technique has been

applied to design multiplexer loop based DFEs with multi-

Gigabit throughput.

5. REFERENCES

[1] S. Kasturia and J. H. Winters, “Techniques for

high-speed implementation of nonlinear cancellation,”

IEEE J. Select. Areas Commun., vol. 9, no. 5, pp. 711-

717, June 1991.

[2] K. K. Parhi, “Pipelining in algorithms with quantizer

loops,” IEEE Trans. on Circuits and Systems, vol. 37,

no. 7, pp. 745-754, July 1991.

[3] K. K. Parhi, VLSI Digital Signal Processing System
Design and Implementation, John Wiley & Son, Inc.,

New York, 1999.

[4] K. K. Parhi and D. G. Messerschmitt, “Concurrent cel-

lular VLSI adaptive filter architectures,” IEEE Trans.
Circuits Syst., vol. CAS-34, pp. 1141-1151, Oct. 1987.

[5] K. K. Parhi and D. G. Messerschmitt, “Pipeline in-

terleaving and parallelism in recursive digital filters,

Part I and Part II,” IEEE Trans. Acoust., Speech, Sig-
nal Processing, pp. 1099-1135, July 1989.

[6] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm

implementation: Breaking the ACS-bottleneck,” IEEE
Trans. Commun., vol. 37, pp. 785-790, Aug. 1989.

[7] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state,

radix-4 Viterbi decoder,” IEEE J. Solid-State Circuits,

vol. 27, no. 12, pp. 1877-1885, Dec. 1992.

[8] H. D. Lin and D. G. Messerschmitt, “Improving the

iteration bound of finite state machines,” in Proc.
Int. Symp. Circuits and Systems, pp. 1328-1331, May

1989.

[9] K. K. Parhi, “Look-ahead in dynamic programming

and quantizer loops,” in Proc. IEEE Int. Symp. Circuits
and Systems, pp. 1382-1387, May 1989.

[10] K. K. Parhi, “Low-energy CSMT carry generators and

binary adders,” IEEE Trans. on VLSI Syst., vol. 7, no.

4, pp. 450-462, Dec. 1999.

[11] C. Leiserson, F. Rose, and J. Saxe, “Optimizing syn-

chronous circuitry by retiming,” in Third Caltech Con-
ference on VLSI, pp. 87-116, 1983.

V - 24

➡ ➠

