
MEMORY ANALYSIS AND ARCHITECTURE FOR
TWO-DIMENSIONAL DISCRETE WAVELET TRANSFORM

Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Email:{cthuang, pctseng, lgchen}@video.ee.ntu.edu.tw

ABSTRACT

The large amount of the frame memory access and the die area
occupied by the embedded internal buffer are the most critical is-
sues for the implementation of two-dimensional discrete wavelet
transform (2-D DWT). The former would consume the most power
and waste the system memory bandwidth. The latter would en-
large the chip size and also consume much power. In this paper,
we categorize and analyze the 2-D DWT architectures by differ-
ent external memory scan methods. Then the overlapped stripe-
based scan method is proposed to provide an efficient and flexible
implementation for 2-D DWT. The implementation issues of the
internal buffer are also discussed, including the lifting-based and
convolution-based. Some real-life experiments are given to show
that the performance of area and power for the internal buffer is
highly related to memory technology and working frequency, in-
stead of the required memory bits only.

1. INTRODUCTION

DWT has been developed as an efficient DSP tool for signal anal-
ysis, image compression, and even video compression. There are
many architectures proposed for the implementation of DWT. For
the 1-D DWT, the architectures can be categorized into the convolu-
tion-based [1], lifting-based [2, 3], and B-spline-based [4]. When
extending the 1-D DWT module to the 2-D DWT architecture, the
memory issue is the most important design consideration [5] be-
cause the 2-D DWT requires a large amount data access and stor-
age. The design trade-off mainly comes from the frame memory
access bandwidth and the internal buffer size. In [5], the design
alternatives are evaluated in the aspects of power and memory re-
quirements. However, the evaluation only covers three specified
2-D architectures. The frame memory is usually off-chip so that
the external frame memory access would consume the most power
and waste much system memory bandwidth. As the cache is used
to reduce the main memory access in the general processor archi-
tectures, so the internal buffer is used to reduce the frame memory
access for 2-D DWT. However, the internal buffer would occupy
much die area. Many 2-D DWT architectures using different mem-
ory structures have been proposed [6, 7, 8, 9, 10].
In this paper, we discuss two independent issues of the 2-D DWT
architectures. The first one is the trade-off between the external

This work was supported in part by MOE Program for Promoting Aca-
demic Excellence of Universities under the grant number 89E-FA06-2-4-8,
in part by National Science Council, Republic of China, under the grant
number 91-2215-E-002-035, and in part by the MediaTek Fellowship.

frame memory access and the internal buffer size. And one effi-
cient and flexible frame memory scan method is proposed. The
second one is the real-life implementation methods for the internal
buffer. The organization of this paper is as follows. Prerequisites
for DWT architectures are given in section 2. Then we catego-
rize previous 2-D DWT architectures in section 3 and propose an
efficient scan method in section 4. In section 5, the implementa-
tion methods of the internal buffer are discussed and some real-life
experiment results are also presented. A summary is given to con-
clude this paper in section 6.

2. PREREQUISITE

The 1-D DWT architectures can be categorized into convolution-
based, lifting-based, and B-spline-based [4]. When extending the
1-D DWT modules to the 2-D line-based architectures, the reg-
isters will become the internal line-buffer that is called temporal
buffer in [7]. Besides, if the image pixels are input in raster scan,
additional internal buffer, called data buffer, will be required to
store the intermediate DWT coefficients because the 1-D modules
are usually two-input-two-output per cycle for 100% hardware uti-
lization.
The implementation of the temporal buffer is dependent on the
adopted 1-D modules, which will be discussed in section 5. How-
ever, the data buffer is only corresponding to the raster scan and
can be minimized to one line [7]. If the image pixels are input in
Z-scan fashion [10], the data buffer can be eliminated. Thus, the
data buffer will be excluded in the following discussion.
In [10], an optimal Z-scan is proposed for the JPEG 2000 system
to minimize the total size of the internal buffer, including the tem-
poral buffer of the DWT and the EBCOT word-to-bitplane buffer.
However, if EBCOT is performed in the bitplane parallel mode,
the word-to-bitplane buffer can be discarded at all [11]. As a re-
sult, the temporal buffer of DWT is a very important factor for a
JPEG 2000 system.

3. PREVIOUS FRAME MEMORY SCAN METHODS

In this section, we focus on the 1-level 2-D architectures that per-
form 1-level 2-D DWT only [7]. There are two ways to extend
them to multi-level decompositions. The first one is performing
1-level DWT recursively, which increases the frame memory ac-
cess by the factor 1 + 1

4
+ ... + (1

4
)J = 4

3
(1 − (1

4
)J) if J-level

decompositions are required while the internal buffer size is the
same. The other one is to extend the 1-level architecture to the
multi-level one that performs all levels of DWT decomposition at

V - 130-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

a time, which will be mentioned for each scan method except the
direct one.

3.1. Direct scan

The direct scan is the straightforward implementation of 2-D DWT
and uses the frame memory to store the intermediate DWT coeffi-
cients. The row-wise DWT is performed first and then the column-
wise DWT. Thus, the frame memory reads and writes are both
2N2 words for 1-level DWT, where N is the image width and
height.

3.2. Line-based scan

The line-based scan method uses some internal line buffer to store
the intermediate DWT coefficients [6, 7]. The scan order is the
raster scan. The size of the temporal line buffer is LN , where
L is the number of registers in the adopted 1-D DWT module.
For example, L is 4 and 7 for the lifting-based and convolution-
based (9,7) filters without pipelining, respectively [3]. The frame
memory reads and writes are both N2 words for 1-level DWT. For
the multi-level architecture, the size of line buffer is increased by
the factor α = 1 + 1

2
+ ... + (1

2
)J = 2(1 − (1

2
)J).

3.3. Non-overlapped and overlapped block-based scan

Block-based methods scan the frame memory block-by-block, and
the DWT coefficients are also computed block-by-block. If the
blocks are not overlapped with each other, the frame memory reads
and writes are both N2 words for 1-level DWT [8]. For each
block, some intermediate data need to be stored for two neighbor-
ing blocks as shown in Fig. 1(a), where the grey area represents the
intermediate data. We assume the blocks are scanned in the row
direction first. Then the size of the internal buffer is LN + LBy .
For the multi-level architecture, the size of line buffer is also in-
creased by the factor α.

Bx

By

.........

(a) Non-overlapped

.........2K

Bx

By

(b) Overlapped

Fig. 1. Block-based scan methods

On the other hand, the buffer LN can be eliminated if the
column-wise intermediate data are not stored. Instead, we can re-
transmit the required data at the block boundary from the frame
memory. The block-based scheme in [9] is generalized to the over-
lapped block-based scan method as shown in Fig. 1(b), where
K = �F−1

2
� and F is the DWT filter tap. That is, the blocks

are overlapped 2K pixels in the column direction. The overlapped
area is described in Fig. 2 in more detail. The DWT coefficients of
the first K and last K columns are not valid. Thus, the overlapped
pixels are 2K for deriving all DWT coefficients. The retrans-
mission scheme increases the frame memory reads to N2 By

By−2K

words while the frame memory writes is still N2 words. The inter-
nal buffer size LBy can be reduced by shrinking the block size, but
it would also increase the frame memory read bandwidth. As for
the multi-level architecture, the overlapped area will become 2JK
that increases exponentially as J , and the frame memory reads be-
come N2 By

By−2J K
words. Thus, the overlapped block-based scan

is not feasible for multi-level architectures.

valid
coefficients

valid
coefficients

K

K

Block in the
current row

Block in the
next row

Fig. 2. Details of the overlapped blocks

3.4. Non-overlapped stripe-based scan

The optimal Z-scan method is proposed in [10], which is equiva-
lent to perform the line-based scan in the wide block (Bx = N).
In concept, the wide blocks can be viewed as stripes. So, this kind
of method is categorized as the non-overlapped stripe-based scan
as shown Fig. 3. The internal buffer size is LN + LS, where S is
the width of the stripe. The first term is for the intermediate buffer
between stripes, and the second term is for the line buffer inside
stripes. For the multi-level architecture, the size of line buffer is
also increased by the factor α.

S

.........

Fig. 3. Non-overlapped stripe-based scan method

4. PROPOSED OVERLAPPED STRIPE-BASED SCAN
METHOD

We proposed the overlapped stripe-based scan method as shown
in Fig. 4. All parameters are the same as that of the overlapped
block-based scan method, except the stripe width S is used instead
of By. This scan method can avoid the complex control circuits for
block-based DWT architectures.

4.1. Comparison

The comparisons of the aforementioned scan methods are listed in
Table 1. The trade-off between external memory access and inter-
nal buffer size is presented. The direct scan does not require any

V - 14

➡ ➡

.........

2K

S

.........

Fig. 4. Overlapped stripe-based scan method

internal buffer but suffers nearly double external memory access
than other scan methods. The line-based scan method minimizes
the external memory access but requires larger internal buffer size.
According this table, the two non-overlapped scan methods are
worse than the line-based scan method due to the larger internal
buffer and higher control complexity. Between the two overlapped
scan methods, the stripe-based one may be preferred for its sim-
plicity. In fact, the overlapped stripe-based scan method can be im-
plemented by use of a line-based architecture with the width S and
an external memory address generator. Especially, the proposed
scan method is degenerated to the line-based scan when S = N .
As a result, the proposed overlapped stripe-based scan method can
provide the best trade-off among external memory access, internal
buffer size, and the control complexity.

5. INTERNAL BUFFER IMPLEMENTATION METHODS

In this section, we discuss the implementation methods for the in-
ternal buffer. The resulting performance is related to not only the
required memory bits but also the memory structures, such as two-
port or single-port memory. However, only the required memory
size is discussed in literature.

5.1. Lifting-based DWT module

The registers in the lifting-based 1-D DWT module can be con-
structed to the internal buffer as Fig. 5. One method is to use a
two-port memory to represent the registers because one-read-one-
write per cycle is required. The other method is to use two single-
port memories and exchange the roles of reads and writes for each
different line in a ping-pong fashion. The required memory bits for
the second method are the double of that for the first one. However,
two-port memories are always larger and more power-consuming
than single-port memories due to the memory cell design technolo-
gies.
Besides the above methods, we can slow down the DWT module
by 2 so as to change the memory access to only one-read or one-
write in one cycle. Thus, one single-port memory is sufficient,
but the throughput of this method is halved. All registers can be
merged into one corresponding address for higher density. Thus,
only one two-port memory, two single-port memories, and one
single-port memory are required for the first, second, and folded
methods, respectively.

5.2. Convolution-based DWT module

The registers in the convolution-based DWT module can be con-
structed as Fig. 5 as well. The number of registers is usually larger
than the lifting-based architectures, so the required memory size is
also larger. However, the FIFO (first-in-first-out) register chain of

D

Register in
1-D DWT

Two-port
RAM

Single-port
RAM

Single-port
RAM Line-buffer in

2-D DWT

Single-port
RAM

Folded
Read at even cycles
Write at odd cycles

Fig. 5. 1-D Registers to 2-D line-buffer

the parallel filters can be implemented in a more efficient way. The
data in the memories are not necessarily changed in every cycle.
Instead, only two data need to be updated in every cycle. Thus,
we can use F separate single-port memories for this rotation-like
read-and-write method. In every cycle, two of them are written
and others are read.
As for the folded architecture, it can be implemented as the lifting-
based module to a unified single-port memory. It can also be con-
structed by (F-2) separate single-port memories. Two of them are
written for every other cycle, and all of them are read for every
other cycle.

5.3. Experiments

For examining the real-life implementation, we use the Artisan
TSMC 0.25mm Process High-Density Single-Port SRAM Gener-
ator and the High-Speed Two-Port Register File Generator to gen-
erate the required single-port and two-port memories. In these ex-
periments, we consider the (9,7) DWT filter and the image width is
set as 64 or 128. The internal wordlength is 16-bit for all registers.
We use the flipping structure to implement lifting-based architec-
tures for saving the internal buffer [3]. The flipping structures can
be synthesized by the Synopsys Design Compiler to about 70MHz
and 130MHz by using only 4 and 7 registers with the Artisan 0.25-
µm cell library while the conventional lifting-based architectures
need 4 and 10 registers for 30MHz and 100MHz, respectively. The
convolution-based architectures are implemented by use of paral-
lel filters, and 93MHz can be achieved with 7 registers.
The results of all implementation methods are listed in Table 2 and
3 for working frequencies 50MHz and 100MHz, respectively. It
can be found that the best performance in terms of area and power
is dependent on the image width and working frequency. This il-
lustrates the performance is highly related to the memory design
technology. The smallest number of the required memory bits can
not guarantee the best performance.
The throughput of folded methods at 100MHz is equivalent to that
of non-folded ones at 50MHz. The results of folded methods are
shown in Table 4. Compared with Table 2, the folded method in
section 5.1 can provide the smallest area.

6. SUMMARY

The main contribution of this paper is to provide a detailed and
feasible memory analysis for 2-D DWT architectures. We discuss
two important memory issues for 2-D DWT implementation. The
first one is the trade-off between external frame memory access
and internal buffer size. Different frame memory scan methods are
analyzed, and one efficient overlapped stripe-based scan method is
also proposed. The second issue is the implementation method for

V - 15

➡ ➡

Table 1. Comparisons of scan methods for 1-level 2-D DWT

Frame Memory Read
(words) 2N2 N2 N2 N2By/(By-2K) N2 N2S/(S-2K)

Frame Memory Write
(words) 2N2 N2 N2 N2 N2 N2

Internal Buffer Size
(words) 0 LN L(N+By) LBy L(N+S) LS

Control Complexity Low Medium High High Medium Medium

Overlapped
Block-based

Non-
overlapped

Stripe-based

Proposed
Overlapped

Stripe-based
Direct

Line-
based

Non-
overlapped

Block-based

Table 2. Comparisons of internal line buffer at 50MHz

DWT module Flipping Flipping Conv. Flipping Flipping Conv.

Memory Type
Two-
port

Single-
port

Single-
port

Two-
port

Single-
port

Single-
port

Memory
Configuration (bit)

64x64 2 64x64 9 64x16 128x64 2 128x64 9 128x16

Total Area (mm2) 0.2500 0.2515 0.3457 0.3988 0.3535 0.495

Power (mW) 39.71 45.02 65.25 52.89 45.89 67.23

N=64 N=128

Table 3. Comparisons of internal line buffer at 100MHz

DWT module Flipping Flipping Conv. Flipping Flipping Conv.

Memory Type
Two-
port

Single-
port

Single-
port

Two-
port

Single-
port

Single-
port

Memory
Configuration (bit)

64x112 2 64x112 9 64x16 128x112 2 128x112 9 128x16

Total Area (mm2) 0.3786 0.4261 0.3457 0.6038 0.5969 0.495

Power (mW) 62.73 162.0 130.5 82.90 165.18 134.46

N=64 N=128

the internal buffer. We introduce some methods for lifting-based
and convolution-based DWT modules. According to the experi-
ments, the fewest required memory bits can not guarantee the best
performance of area and power. Instead, the memory design tech-
nology may dominate the results.

7. REFERENCES

[1] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Archi-
tectures for wavelet transforms: A survey,” Journal of VLSI
Signal Processing, vol. 14, pp. 171–192, 1996.

Table 4. Folded methods at 100MHz for equivalent 50MHz
throughput

DWT module Flipping/Conv. Conv. Flipping/Conv. Conv.

Memory Type Single-port Single-port Single-port Single-port

Memory
Configuration (bit) 64x112 7 64x16 128x112 7 128x16

Total Area (mm2) 0.2130 0.2689 0.2985 0.3850

Power (mW) 81.16 65.25 82.59 67.19

N=64 N=128

[2] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architec-
ture for lifting-based forward and inverse wavelet transform,”
IEEE Transactions on Signal Processing, vol. 50, no. 4, pp.
966–977, Apr. 2002.

[3] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Flipping struc-
ture: An efficient VLSI architecture for lifting-based discrete
wavelet transform,” in Asia-Pacific Conference on Circuits
and Systems, 2002, pp. 383–388.

[4] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “VLSI architec-
ture for discrete wavelet transform based on B-spline factor-
ization,” in IEEE Workshop on Signal Processing Systems,
2003, pp. 346–350.

[5] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos,
Y. Andreopoulos, and C. E. Goutis, “Evaluation of design
alternatives for the 2-D-discrete wavelet transform,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 12, pp. 1246–1262, Dec. 2001.

[6] C. Chrysafis and A. Ortega, “Line-based, reduced memory,
wavelet image compression,” IEEE Transactions on Image
processing, vol. 9, no. 3, pp. 378–389, Mar. 2000.

[7] P.-C. Tseng, C.-T. Huang, and L.-G. Chen, “Generic RAM-
based architecture for two-dimensional discrete wavelet
transform with line-based method,” in Asia-Pacific Confer-
ence on Circuits and Systems, 2002, pp. 363–366.

[8] W. Jiang and A. Ortega, “Lifting factorization-based discrete
wavelet transform architecture design,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 11, no. 5,
pp. 651–657, May 2001.

[9] H. Yamauchi et al., “Image processor capable of block-noise-
free JPEG2000 compression with 30frames/s for digital cam-
era applications,” in IEEE International Solid-State Circuits
Conference, 2003, pp. 46–47.

[10] M.-Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal data transfer
and buffering schemes for JPEG 2000 encoder,” in IEEE
Workshop on Signal Processing Systems, 2003, pp. 177–182.

[11] H.-C. Fang, C.-T. Huang, Y.-W Chang, T.-C. Wang, P.-C.
Tseng, C.-J. Lian, and L.-G. Chen, “81 M samples/s JPEG
2000 single-chip encoder with rate-distortion optimization,”
in IEEE International Solid-State Circuits Conference 2004,
accepted.

V - 16

➡ ➠

