
ASYNCHRONOUS MULTI-CORE ARCHITECTURE FOR LEVEL SET METHODS

Eva Dejnožková and Petr Dokládal

School of Mines of Paris, Center of Mathematical Morphology, 35, Rue Saint Honoré,
77305 Fontainebleau, France, e-mail:{dokladal,dejnozke}@cmm.ensmp.fr

ABSTRACT

This paper proposes an asynchronous multi-core architec-
ture for embedded systems using partial differential equa-
tions-based image processing algorithms. The study of data
flow and the timing analysis is carried out in order to re-
veal optimal global architecture specifications. The global
architecture uses a semi-parallel approach with several pro-
cessing units running in parallel and shared memory blocks.

The results are illustrated by the implementation of a
continuous watershed transform, followed by a discussion
of the measured execution time and the computational load
to demonstrate the efficiency.

1. INTRODUCTION

The Partial Differential Equations (PDE) based methods be-
come popular because they offer an independence on the
discretization grid, a better mathematical modelisation and
a sub-pixel precision. The nowaday applications range from
low-level (such as smoothing, denoising) to high-level im-
age processing (such as segmentation by active contours or
watershed) used for either static images, or sequences for
object tracking. Other examples include recently proposed
segmentation algorithms as the depth-, area- and volume-
controlled continuous watershed [1], combinations of the
level set methods with other techniques Principal Compo-
nent Analysis (PCA) [2]. An overview of image improve-
ment (PDE-based) operators can be found in [3].

In general, the application requires to solve non-linear
PDEs. The numerical solution is obtained by recursive al-
gorithms characterized by a high number of iterations. An-
other difficulty comes out from the use of hierarchical real-
weighted data structures for some algorithms. Many authors
have oriented their research to limite the iteration number
by accelerating the convergence [4], by reformulating the
sequential algorithm in a parallel way [5] or by eliminating
the need of ordered data structures [6].

However, embedded systems remain rare. They are prin-
cipally limited to the implementation of PDE-based filters
[7]. As an example of specialized hardware for the active
contours segmentation, one can cite implementation on a

graphics hardware [8]. The objective of this paper is to de-
fine an embedded system architecture fitting the needs of
the above-mentioned applications yet remaining sufficiently
general and easily programmable with usual development
tools.

First, we present an overview of the most frequent types
of PDE-based algorithms. Then we concentrate on the ana-
lysis and optimization of the data-flow path to find an opti-
mal load balance of all blocks of the architecture. Finally
we propose a multi-core architecture built around several
asynchronously operating RISC cores on one chip.

2. ALGORITHMS OVERVIEW

Typically, the result is obtained by deforming a given curve
(propagation front) or surface with a given PDE. We con-
sider only the Level Set formulation of the PDE-based meth-
ods [9] which can be classified as follows (u is the evolving
function with u0 as initial conditions):
1) Surface propagation. It includes diffusion filters, geo-
metric smoothing, denoising, morphological operators with
evolution controlled by equation: ∂u

∂t = F(u)|∇u|. In every
iteration are processed all points in the image are processed.
The temporal evolution is based on the local neighbourhood
and generates the evolution of the level sets in the space [9].
The evolution stops as soon as the convergence or a given
number of iterations is reached.
2) Wave propagation. The algorithms including weighted
distance, continous watershed, Voronoı̈ tesselations, Shape
from shading are controlled by the Eikonal equation |∇u| =
F . The solution is propagated from the given sources on the
entire image according to the speed F defined. The algo-
rithm operates locally, only on the narrow band around the
wave front. Typically, the front is propagated as equidistant
to the sources by using ordered data structures [10].
3) Deformable models. We distinguish the types with re-
gularizers (controlled by statistical information of regions),
without regularizers (information of regions is not used) or
combined with PCA. The general evolution equation has the
form: ∂u

∂t =Fcurvature(u) + Fgrad(u) + Fregion(u). The algo-
rithms proceeds by deforming a given initial contour. The
deformation is controlled by a force obtained at each itera-

V - 10-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

tion from the contour and geometrical (curvature, gradient)
or statistical characteristics of the image (region intensity
mean value) [9].
4) Optical flow : ∂u

∂t = f(∇u, I1) + g(∂I2
∂x , h), ∂v

∂t =
f(∇v, I1) + g(∂I2

∂y , h). The motion vector is obtained by
solving the systems of the above equations at each point in
the image (I1, I2 are the successive sequence images, h is
the searched motion vector field) [11].

If the image is considered as a continuous signal then
the PDEs evolution can be seen as an iteration of a local
filter operating on the neighbourhood [9]. From the im-
plementation point of view, when updating a given point,
only the local neighbourhood information is needed. Hence
we have an important possibility of parallelism. The defini-
tion of the neighbourhood depends on the numerical scheme
used for PDE discretisation (for details, see e.g. [9]). Below
we assume the 4-neighbourhood and a more frequently used
explicite Euler scheme for the integration. In order to ana-
lyse the data path, we organize the algorithms in two major
groups (see Fig. 1): 1) Global Scope: algorithms that in
one iteration process all points in the image and 2) Narrow
Band: algorithms that in one iteration process only points
close to the contour.

�����������	
���
��������������
	���

�
�	���������	�
���
����
�
����

���������
���������	����
�����
����
��	
�������
���
���������	�����

������ ����
����
�� !�	
���� ��"�

�� ���������������
�"
	�����"
	���	

�������
#�����

$�	�������

�
�	�����
 ���	
���

�� ���������������
����
����"
	��
�%�

&����"�'����%�������

(������������%�������
������	�	
��

Fig. 1. PDE-based algorithms overview.

One iteration of both algorithm types can be written in
the following form:

Algo. 1. General PDE algorithm

for all pi ∈ A do (in parallel)
{ Retrieve Neighborhood un(N(pi)) and un(pi);

Calculate Value un+1(pi);
Update Value un+1(pi);
Activate New Points (insertion in A); }

The set A contains points to be processed in one iteration.
The Narrow Band type algorithms act only on the active po-
ints, i.e. points close to the current position of the travelling
interface. Then A = {p | |dist(p)| < NBwidth/2}, where
NBwidth is the width of the narrow band around the contour.
The Global-Scope type algorithms act in every iteration on
the entire image. Hence, each point in the image is active
and the set A = supp(I), I =image.

2.1. Data flow analysis

Inside one iteration, the new values of points are indepen-
dent each of the other, hence the computation can be pa-
rallelized. Fig. 2 shows the data flow corresponding to the
Algo. 1. The basic modules are the following ones (see
Fig. 2): 1)Processing units (PU): compute the values of
points according to the numerical scheme with the required
accuracy. Several PUs operate in parallel. 2)Data memo-
ry: contains the images or other necessary informations as
flags. 3)Active points memory: is used to store the active
points in A (for the Narrow-Band-type algorithms).

DATA
MEMORY

ACTIVE POINTS
MEMORY

PU1 PU2 PU3 PUn…

Fig. 2. Data-flow chart. The width of the paths corresponds
to the volumes of data transitting on.

The outgoing data flow from the DATA MEMORY block
is higher than the incoming data flow; indeed, to process a
point pi, a given PU has to extract its complete neighbour-
hood but it updates only one value. Thus, for 4-neighbour-
hood, the outgoing data flow is five times higher (the point
pi and its four neighbours) than the incoming one (updated
point pi). Similarly, at one moment, one PU can only read
one point from the active points memory and may activate
from one to several neighbours. Nevertheless, according to
our experimental measurements, one processed point usu-
ally inserts one or two points (up to 90%). Therefore, the
mean incoming data flow in the active points memory is
only slightly higher than the outgoing data flow.

2.2. Timing analysis

The parallel running of the PUs on Fig. 2 generates simulta-
neous accesses to the shared memory. The optimal manage-
ment can be obtained by considering also the execution tim-
ing. As results from Fig. 3, the code structure has two major

PU
3

PU
n

PU
2

PU
1

retrieve neighbourhood N(pi)

recalculate the value
of pi (variable length)

update the value of
pi (variable length)

retrieve point pi to process

activate other points

the complete processing of one point
consists of the following steps :

as
yn

ch
ro

no
us

 e
xe

cu
tio

n

sy
nc

hr
on

ou
s

st
ar

t

…

Fig. 3. Timing.

features: i) the retrieval of the point and of its neighbours

V - 2

➡ ➡

values is significantly faster than the recalculation, and ii)
the recalculations of different points have different lengths
because of if-conditions in the code.

Hence, the efficient execution of the code on several
PUs has to be asynchronous. Recall, that asynchronous ex-
ecution is possible because the point values are independent
of each other. Moreover, asynchronous execution is advan-
tageous because it makes the accesses random in time re-
ducing the number of simultaneous memory manipulations.

3. GLOBAL ARCHITECTURE

As results from the above-given algotrithm analysis, the ar-
chitecture must consider both memory random acces (Nar-
row Band type) and the entire image scanning (Global Scope
type). To obtain a balanced activity of all the processing
units we have adopted the semi-parallel approach where the
data memory and the active points memory are shared (see
Fig. 4). The Labels and Flags are used by the program-
mer for additional algorithm control and region propaga-
tion. The computation of F , which is generally a non-linear
function, represents the second challenge of an efficicent
implementation. It seems necessary to use an ALU (Arith-
metic Logic Unit). Therefore the choice of several paral-
lely operating RISC cores with the optimized peripheries is
straightforward. In our case, we have used four RISC pro-
cessors with a usual instruction set. (The number of PUs is
done by embedded cores available on existing FPGAs.)

LABELS

FLAGS

DATAL
IF

O
∅

L
IF

O
1

D
A

TA
M

E
M

O
R

Y

A
C

T
IV

E
PO

IN
T

S
M

E
M

O
R

Y

RISC RISC

RISCRISC

Fig. 4. Global architecture

To minimize the bus occupation the buses for reading
and writing are separated. The same code is executed by
each PU in an asynchronous way. Simultaneous accesses
are handled by using semaphores. Whenever a simultaneous
access to some memory occurs then the first arrived PU is
served and the other is waiting until the memory is released.
This principle simplifies the design of the shared blocks, and
multiple-port blocks are not needed.

The active points memory contains the coordinates of
the points to be processed. This memory is separated in two
blocks. The currently processed points are in the one block
and the the points activated for the next iteration in the other
one. Provided that the processing order is indifferent, this
memory is implemented by using two LIFOs as there is no
transport delay (compared to a FIFO). The reading/writing
direction is controlled by using a signal switch which
commutes at the end of every iteration.

Note, that despite asynchronous execution, the PDE-
based algorithms have one or more synchronization points:
the end of the iteration. This is indicated by either: i) empti-
ness of one of the LIFOs (Narrow Band type algorithms), or
ii) end of the raster scan of the image (Global Scope type al-
gorithms). The end of the algorithm is indicated by either:
i) emptiness of both LIFOs (for the Narrow Band type algo-
rithms), or ii) the number of necessary iterations (both algo-
rithm types), or iii) the convergence (both algorithm types).

4. RESULTS: CONTINUOUS WATERSHED
IMPLEMENTATION

Recall that in terms of PDEs, the watershed transformation
can be obtained by computing the weighted distance func-
tion to a given set of sources (must be identical to the set
of local minima in the image) [12], [13]. In our imple-
mentation we have used a parallel algorithm called Massive
Marching [5]. The Massive Marching can be used both for
narrow band and global scope algorithms without any loss
of efficiency. At the same time, it supports massively par-
allel, semi-parallel or sequential implementation. For the
implementation on the proposed architecture, the algorithm
can be written as follows:

Algo. 2. Continuous watershed by Massive Marching

switch=0;
while (LIFO(∅) and LIFO(1) not empty) do
{ // iterations

for all pi in LIFO(switch) do (in parallel)
{ Retrieve Point pi from LIFO(switch);

Retrieve Neighborhood N(pi) and pi;
Calculate Value of pi;
Update Value of pi;// change label and flag
// activate new points (insertion in A):
Insert Other Points in LIFO(switch); }

switch = switch; }

We have computed the continuous watershed on one
to four parallely operating Processing Units. Figure 5(a)
shows the execution time (in terms of total clock cycles ver-
sus the number of processing units operating in parallel).
The measured number of clocks (including the simultane-
ous propagation of region labels) is compared to the theo-
retical execution time in clock cycles obtained as clkN =
clk1/N . Although the simple memory access control using
semaphores introduces some latency, the measured number
of clock cycles is close to the theoretical expected gain.

Figure 5(b) gives the computational load distributed over
the processing units. The computational load is expressed as
the number of points processed by every PU. The total com-
putational load is uniformly distributed between all PUs.

Table 1 compares the bandwidth of the computation of a
weighted distance, with simultaneous propagation of source

V - 3

➡ ➡

0

5

10
15

20

25

30

35
40

45

50

1 2 3 4

M
ill

io
n

s
o

f
cl

o
ck

 c
yc

le
s

Number of processing
units used

Execution time

Measured

Theoretical

1
2

3
4

1
2

3
4

0

100

200

300

400

500

600

700

Processing unit
number

Number of
processing
units used

Number of points processed by every
processing unit [x thousands]

(a) (b)
Fig. 5. (a) The execution time of the algorithm in function
of the number of parallel Processing Units. (b) The activity
load distributed over several Processing Units.

Table 1. The obtained bandwidth vs. other platforms.
Platform/Frequency Bandwidth (pixels/s)

4 RISC cores/120MHz 52.2 × 105

PentiumIII(Linux)/450MHz 29.5 × 105

StrongARM(iPAQ)/206MHz 10.1 × 103

labels, obtained by using Massive Marching implemented
on various platforms. The bandwidth is computed as the
number of processed points divided by the execution time.
Recall that its calculation complexity slightly exceedsO(N)
because some points can be computed several times [5].

5. CONCLUSIONS

This paper proposes an asynchronous multi-core architec-
ture for Level Set formulation of PDE-based algorithms.
The implementation choices are demonstrated by the analy-
sis of general algorithms and their timing. The architecture
is built around four cores of general-purpose RISC proces-
sors and is therefore easily programmable, and re-usable for
other purposes.

The measurements and tests of the proposed architec-
ture has been obtained on the implementation of continuous
watershed with simultaneous propagation of labels.

It has been shown that the management of the simulta-
neus memory acceses by simple semaphores is sufficient at
least up to four PUs. As results from the study of the exe-
cution time and the processing unit activity, the semaphores
are efficient and more complicated architecture would be
useless. Although the proposed architecture is an embedded
system, our benchmarking has shown that it outperforms
other embedded systems and its performance is comparable
to Pentium based PC.

The future work will focus on two domains: 1) the im-
plementation of other curve evolution algorithms such as
deformable models, 2) the optimisation of the processor
cores such as the personalization of the instruction set (if
the neighbourhood extraction is reduced to one clock cycle,
an additional estimated gain of one third of the execution
time can be obtained).

6. REFERENCES

[1] A. Sofou and P. Maragos, “PDE-based modeling of
image segmentation using volumic,” in IEEE ICIP03,
September 2003.

[2] X. Bresson, P. Vandergheynst, and J.P. Thiran, “A pri-
ori information in image segmentation: Energy func-
tional based on shape statistical model and image in-
formation,” in IEEE ICIP03, Spain, September 2003.

[3] F. Guichard and J.M. Morel, “Introduction to partial
differential equations in image processing,” in Tuto-
rial Notes, IEEE Int. Conf. Image Proc., Washington,
October 1995.

[4] J. Weickert, B. M. ter Haar Romeny, and M. A.
Viergver, “Efficient and reliable schemes for nonlin-
ear diffusion filtering,” in IEEE Transactions on Image
Processing, vol. 7, pp. 398–410. March 1998.

[5] E. Dejnožková and P. Dokládal, “A parallel architec-
ture for curve-evolution PDEs,” Image Analysis and
Stereology, vol. 22, 2003, June.

[6] Y. Tsai, “Rapid and accurate computation of the dis-
tance function using grids,” Tech. Rep. 17, University
of California, USA, 2000.

[7] T. Gijbels, P. Six, L. Van Gool, F. Catthoor, H. De
Man, and A. Oosterlinck, “A VLSI architecture for
parallel non-linear diffusion with applications in vi-
sion,” IEEE, Workshop on VLSI Sig. Proc., 1994.

[8] M. Rumpf and R. Strzodka, “Level set segmentation
in graphics hardware,” IEEE ICIP01, 2001.

[9] G. Sapiro, Geometric Partial Differential Equations
and Image Analysis, Cambridge University Press,
2000.

[10] R. Kimmel, Curve Evolution on Surfaces, Ph.D.
thesis, Technion Israel Institute of Technology, May
1995.

[11] L. Alvarez, J. Weickert, and Javier Sanchez, “A scale-
space approach to nonlocal optical flow calculations,”
in Scale-Space Theories in Computer Vision, 1999, pp.
235–246.

[12] L. Najman and M. Schmitt, “Watershed of a continu-
ous function,” Signal Processing, vol. 38, pp. 99–112,
July 1994.

[13] F. Meyer and P. Maragos, “Multiscale morphologi-
cal segmentations based on watershed, flooding, and
Eikonal PDE,” in Scale-Space Theories in Computer
Vision, pp. 351–362. Springer-Verlag, 1999.

V - 4

➡ ➠

