
A SUBGRADIENT ALGORITHM FOR LOW COMPLEXITY DMT PAR MINIMIZATION

Alper Erdogan

EE Department, Koc University
Sariyer, Istanbul, Turkey.

email:alperdogan@ku.edu.tr

ABSTRACT

An iterative Peak-to-Average power Ratio (PAR) reduction
algorithm for Discrete Multi Tone (DMT) based systems,
such as OFDM and VDSL, is introduced. The proposed
algorithm uses reserved or unused tones to minimize the
l∞ norm of the DMT symbol vector iteratively based on
a subgradient optimization technique. The resulting itera-
tive algorithm has a very simple update rule and therefore a
low computational complexity. Furthermore, the PSD level
constraints can be easily incorporated into the algorithm.
The proposed algorithm’s performance is illustrated for an
OFDM system with 256 carriers. It is shown that a high
PAR reduction is achieved especially for the cases where the
PAR reduction tones are allowed to exceed the PSD mask
level.

1. INTRODUCTION

Multi-carrier scheme offers various advantages especially
in terms of providing an easy means of counteracting fre-
quency selective effects of broadband channels. For this
reason, it has been the choice and the candidate for several
wire-line (e.g., ITU ADSL, VDSL Standards) and wireless
(e.g., IEEE 802.11a) standards.

One major drawback of the multi-carrier scheme is the
high effective dynamic range of the modulated signal. Con-
sidering the limitations of the analog front end in terms of
its linear operation range, the high dynamic range of the
DMT modulated signal causes severe challenges for the im-
plementation.

A sizeable amount of research has been done to address
this problem (see for example [1, 2, 3, 4, 5] and the ref-
erences therein). The major goal has been to produce low
complexity algorithms and schemes to reduce the high dy-
namic range to a reasonable level with no or the minimum
amount of bandwidth loss. Among the existing methods, the
tone reservation method proposed by Tellado[1] provides a
drastic amount of reduction in the peak to average level of
the multi carrier signal. The method is based on the use of
the unused carriers or the carriers reserved on purpose for
the reduction of the peak level of each symbol. It is shown

that the optimal adjustment of the values of these tones can
be formulated as a linear programming problem. Although
the complexity of this linear program can be reduced by ex-
ploiting the structure of the data matrix, the resulting com-
plexity level may still not be adequate for the real time im-
plementation.

In this article, we propose a low complexity subgradient
based tone reservation algorithm for the iterative minimiza-
tion of the peak level of multi carrier signals. The result-
ing algorithm achieves a near-optimal peak reduction with a
reasonable computational requirement. In addition, the PSD
level constraints imposed by the communications standards
can be easily incorporated into the algorithm.

The organization of the article is as follows: Section 2
outlines the data model and summarizes the convex opti-
mization formulation of the reference [1] for the PAR reduc-
tion problem. Section 3 provides a brief summary of sub-
gradient optimization algorithms. The iterative subgradient
PAR reduction algorithm is provided in Section 4. In Sec-
tion 5, the examples illustrating the proposed algorithm’s
performance are given. Finally, Section 6 is the conclusion.

2. MULTI CARRIER DATA MODEL AND PAR
MINIMIZATION PROBLEM

The baseband samples for a DMT symbol is given by

xn =

N
2∑

k=−N
2 +1

Xke
j2πkn

NL√
N · L , n = 0, . . . , (N + P ) · L − 1,

(1)
where N is the FFT size(without oversampling), P is the
number of prefix samples, Xk is the information signal at
the kth carrier and L is the oversampling factor. Let

x =
[

x0 x1 . . . xN ·L−1

]T
(2)

be the vector formed by the DMT symbol samples (exclud-
ing the prefix), we can write

x = FX (3)
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where F is the IFFT matrix with

Flm =
1√
NL

e
j2π(l−1)(m− N

2 )
NL , l = 1, . . . , N · L

m = 1, . . . , N, (4)

and

X =
[

X−N
2 +1 . . . X0 X1 . . . XN

2

]T

. (5)

The peak to average ratio of the corresponding DMT
symbol is defined as

PAR =
‖x‖2

∞
E(x2

n)
. (6)

The tone reservation method proposed by [1] makes use
of some reserved or unused tones to minimize the peak level
of the symbol ‖x‖∞. If we assume that the Q tones (with
the indexes {l1, l2, . . . , lQ}) are available to be used for the
PAR reduction purposes, we can decompose the expression
in Equation 3 as

x = Γρ + Uϕ︸︷︷︸
γ

, (7)

where ρ =
[

Xl1 . . . XlQ

]T
is the vector containing

tones to be used for the PAR reduction, Γ is the matrix con-
taining the corresponding columns of F, and ϕ is the vector
containing information carrying tones and U is the corre-
sponding partial IFFT matrix. Based on Equation 7, the
peak reduction problem can be posed as the convex opti-
mization problem

minimize ‖x‖∞ = ‖Γρ + γ‖∞. (8)

ρ

As noted in [1], this can be casted as a linear program-
ming problem. However, the conventional methods for the
linear programming are not suitable for the real time imple-
mentation especially for DMT systems with high symbol
rate. In [6], the alternative iterative approaches have been
proposed to provide low complexity alternatives to linear
programming. However, the proposed approaches try to ap-
proximate the solution of the problem in 8 rather than find-
ing its solution.

In this article, we provide the iterative solution of the
convex optimization problem in (8) using the subgradient
method presented in the next section.

3. A REVIEW OF SUBGRADIENT METHODS

Let f(w) be a convex and possibly non-differentiable func-
tion with domain S, where S is convex. The subdifferential
of f(w) at point w is defined as

∂f(w) = {g|f(y) ≥ f(w) + 〈g,y − w〉 ∀y ∈ S}, (9)

where 〈·, ·〉 is the inner product. A vector g which is a mem-
ber of ∂f(w) is called a subgradient of f(w) at w. The non-
differentiable counterpart of the gradient-descent algorithm
is the subgradient projection method in which the gradient
is simply replaced by a subgradient:

w(i+1) = PS

{
w(i) − µ(i)g(i)

}
(10)

where g(i) is a subgradient picked from the subdifferential
set ∂f(w(i)) and PS is the projection to convex set S. Al-
though the subgradient algorithm looks very much like the
gradient descent algorithm, in the subgradient iteration it
may happen that f(w(i+1)) > f(w(i)) for any µ(i) > 0[7].
However, if the µ(i) parameter is properly chosen, w(i) can
be made to converge to the optimal point w∗.

One major result about the selection of the step size pa-
rameter µi is due to Polyak [8]: if

lim
i→∞

µ(i)

||g(i)|| = 0 and
∞∑

i=0

µ(i)

||g(i)|| = ∞

hold then limi→∞ w(i) = w∗, which provides sufficient
conditions for convergence.

Furthermore, if the step size satisfies

0 < µ(i) < 2
(f(w(i)) − f∗)

||g(i)||22
(11)

where f∗ is the minimum value of f(w), then it is guaran-
teed that

||w(i+1) − w∗||2 ≤ ||w(i) − w∗||2 ∀i (12)

i.e., the distance to the optimal vector decreases monotoni-
cally. As f∗ is not known a priori in many practical prob-
lems, the use of an estimate of f∗, instead of f∗ have been
investigated in several references(see for example [9]). Re-
cently Goffin and Kiwiel [10] and Sherali et. al. [11] pro-
posed simple and convergent subgradient algorithms with
variable target value f̂∗.

4. THE SUBGRADIENT BASED PAR REDUCTION
ALGORITHM

In order to find a low complexity solution to the PAR min-
imization problem in Equation 8, we use the subgradient
approach presented in the previous section. The subdiffer-
ential set corresponding to the cost function

f(ρ) = ‖Γρ + γ‖∞ (13)

is given by

∂f(ρ) = Co
{
{ xk

|xk|Γ
H
k,: | |xk| = f(ρ)}

}
, (14)
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where Co represents the convex hull operation. Based on
the above subdifferential set, the PAR minimization algo-
rithm steps can be outlined as

• Determine the time samples for which the peak level
is achieved.

• The complex conjugate of the corresponding rows of
Γ scaled by the magnitude normalized time samples
are the subgradients.

• Possible iteration directions are the negative of the
convex combinations of these subgradients.

Therefore, the possible search directions are the scaled
version of the vectors which define the mapping between the
frequency parameters to be adjusted and the peak values. If
J is the set of time instants for which maximum magnitude
is achieved, i.e., J = {k | |xk| = ||x||∞}, then a possi-
ble search direction for the subgradient projection algorithm
is

d = −
∑
k∈J

ξk
xk

|xk|Γ
H
k,: (15)

, where
∑

k∈J ξk = 1 and ξk ≥ 0. For convenience, one
may choose ξl = 1 for some l ∈ J and ξk = 0 for k 
= l in
which case the search direction simplifies to

d = − xl

|xl|Γ
H
l,:. (16)

As a result, we can summarize the subgradient based
PAR minimization algorithm as follows

ρ(i+1) = ρ(i) − µ(i)
x

(i)

l(i)

|x(i)

l(i) |
ΓH

l(i),:, (17)

where

• l(i) ∈ {0, ..., N · L− 1} is the index where the maxi-
mum magnitude output is achieved at the ith iteration.

• µ(i) is the step size at the ith iteration. We suggest
the use of

µ(i) = α
|x(i)

l(i) | − f̂∗(i)

‖Γl(i),:‖2
2

, (18)

as in the relaxation rule of Equation 11, where α ∈
[0, 2) . Here a reasonable choice for f̂∗(i)

is given by

f̂∗(i)
= |x(0)

l(0)
|10−

Ψ
20 , (19)

where Ψ is the target PAR reduction level. Alterna-
tively, one could use the adaptive target level methods

suggested in references [10, 11] to determine f̂∗(i)
.

The update rule given by Equation 17 is fairly simple.
Most of the computational requirement of the algorithm is
due to the calculation of the contribution of the updated PAR
reduction tones, i.e., Γρ, which requires at most N ·Q com-
plex multiplications and N complex additions per iteration.
(Since the columns of Γ are periodic complex exponentials
the number of multiplications used for computing Γρ can
be significantly reduced by exploiting this fact).

4.1. Incorporation of PSD Level Constraints

The update rule in Equation 17 assumes that the ρ can be
freely selected. However, in applications, the communica-
tions standards impose some PSD mask constraints which
restricts the components of ρ to go beyond certain levels.

The PSD level constraints impose

S = {ρ | |ρk| ≤ βk k = 1, . . . , Q} (20)

as the feasible set of values that ρ can take, where βk is the
magnitude constraint for kth component of ρ . Since S is a
convex set, we can incorporate the PSD level requirements
easily into our algorithm by including projection to the con-
straint set as suggested by Equation 10. As a result, after the
update equation 17, we apply the following projection rule

PS{ρk} =
{

ρk |ρk| ≤ βk,
βk

|ρk|ρk |ρk| > βk,
(21)

to each component of ρ.

5. EXAMPLE

We simulated our algorithm for an OFDM system with 256
carriers. We reserved random 13 tones (approximately 5
percent of the tones) for PAR reduction. In simulations
oversampling factor L is taken as 4 and we applied 50 it-
erations of the algorithm for each DMT symbol.

Figure 1 shows the results obtained from the simulation
where the Complementary CDF (CCDF) functions of PAR
for different cases are plotted. Solid line is for the orig-
inal case where no PAR reduction scheme is applied and
the dashed line represents the results of our algorithm when
there are no PSD level constraints. Comparing these two
curves, for a clipping level of 10−5 as an example, about
4.5dB of effective PAR reduction is achieved.

Some examples of CCDFs for the cases with different
PSD level constraints are also shown in Figure 1. These
sample cases are for

• the PSD Mask Level Constraint,

• 4dB Above the PSD Mask Level Constraint, and,

• 6dB Above the PSD Mask Level Constraint,
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Fig. 1. PAR CCDF for different PSD level constraints.

where a flat PSD mask over all tones is assumed. Based on
these curves, we can conclude that reasonable PAR reduc-
tion is achieved if the PAR reduction tones are allowed to
exceed the nominal PSD level by a factor 4dB or more.

6. CONCLUSION

A low complexity l∞ norm minimizing PAR reduction al-
gorithm is presented. The simple subgradient expression
results in a fairly simple update rule with a low compu-
tational complexity suitable for the real time implementa-
tions. Furthermore, it is easy to incorporate the PSD mask
constraints into the algorithm with negligible computational
cost. The simulation results show that the presented subgra-
dient PAR reduction algorithm achieves a desirable level of
performance if the PSD level constraints for the PAR reduc-
tion tones are adjusted properly.
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