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ABSTRACT

Channel shortening is often necessary for mitigation of inter-
symbol and inter-carrier interference in multicarrier transceiv-
ers. The MERRY algorithm has previously been shown to
blindly and adaptively shorten a channel to the length of the
guard interval in a multicarrier system. In this paper, MERRY
is modified to remove the square root and division needed at
each iteration, with the added benefit of allowing the use of
constraints other than a unit norm equalizer; an extension is
proposed which allows for the use of more data in the MERRY
update; the algorithm is generalized to the MIMO case; and
blind symbol synchronization and initialization techniques are
proposed. Simulations demonstrate the success of the algo-
rithm and the synchronization technique in a MIMO setting.

1. INTRODUCTION

Channel shortening is a generalization of equalization, since
equalization amounts to shortening the channel to length one.
Channel shortening to a length greater than one is frequenctly
used to facilitate equalization in systems employing multicar-
rier modulation (MCM). MCM techniques like discrete multi-
tone (DMT) and orthogonal frequency division multiplexing
(OFDM) have been deployed in applications such as IEEE
802.11a and HIPERLAN/2 wireless LANs, digital audio/video
broadcast, digital subscriber loops (DSL), power line commu-
nications, and satellite radio.

In a system employing MCM, the linear convolution be-
tween the channel and data is made to appear circular by adding
a cyclic prefix (CP) to each data block. If the channel is shorter
than the CP, then the convolution appears circular and the ef-
fect of the channel in the frequency domain is a pointwise mul-
tiplication, which is easily equalized. However, the channel
is often longer than the CP, leading to inter-carrier and inter-
symbol interference (ICI, ISI). In order to mitigate this ICI/ISI,
a time-domain equalizer (TEQ), i.e. a channel shortener, can
be employed at the receiver to shorten the effective channel
to the desired length [1] – [8]. Most TEQs in the literature
have been designed in the context of DSL, which runs over
twisted pair telephone lines. Consequently, most TEQ designs
are trained and non-adaptive.

Recently, blind, adaptive TEQ design has received some
attention. The MERRY (Multicarrier Equalization by Restora-
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tion of RedundancY) algorithm [7] induces channel shortening
by restoring the redundancy in the received data that is due to
the addition of the CP. The algorithm is low-complexity and
converges to the minimum mean squared error (MMSE) so-
lution [1] for a white input. The SAM (Sum-squared Auto-
correlation Minimization) algorithm [9] attempts to shorten
the auto-correlation of the TEQ output sequence, since a short
channel leads to a short auto-correlation. Although SAM con-
verges quickly, it is multimodal and computationally intensive.
The “Carrier Nulling Algorithm” (CNA) [10] exploits the fact
that many MCM systems transmit zeros on some tones (usu-
ally at the band edges). The TEQ can be adapted blindly to
force the corresponding output tones to zero. CNA equalizes
the channel to a single spike (i.e. an impulse) rather than short-
ening it to a window, hence CNA is primarily suited to MCM
systems that do not use a CP [10].

Often, a multiple input, multiple output (MIMO) system
model is of interest, in which multiple channels need to be
shortened simultaneously. In a multicarrier code division mul-
tiple access (MC-CDMA) system, each user spreads its signal
before multicarrier modulation takes place. To enhance perfor-
mance, the receiver can jointly shorten all of the user’s chan-
nels to mitigate ISI before de-spreading. In DSL, joint channel
shortening can be combined with multiuser detection to miti-
gate crosstalk. If a DSL system is operating in echo canceling
mode, then the channel and the echo path must be jointly short-
ened [3], [11]. As another example, multiple receive antennas
or oversampling of the received data may be employed. Joint
channel shortening has been studied in, e.g., [3], [6], [11], and
[12]. However, these works involved extending the training-
based, non-adaptive designs of [1] – [3] to the MIMO case;
whereas this paper considers the blind, adaptive case.

The contributions of this paper are a modification to the
MERRY algorithm which removes the square root and divi-
sion at each iteration and allows for constraints that may be
more appropriate than the unit norm equalizer constraint of
[7]; a method to increase the amount of usable data (MERRY
only uses one sample per block); a generalization to the MIMO
case; and methods for blind initialization and symbol synchro-
nization (issues not addressed in [7]).

2. SYSTEM MODEL AND NOTATION

A single-input, single output (SISO) MCM system model is
shown in Fig. 1. Each block of N samples is passed through
an inverse fast Fourier transform (IFFT) and a dispersive chan-
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Fig. 1. SISO multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel,
CP/xCP: add/remove cyclic prefix.
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Fig. 2. MIMO channel shortening model.

nel h with additive noise. The channel convolution is made
to appear circular by adding a CP, i.e. the last ν samples of
each block are copied and inserted before the beginning of the
block. If the effective channel length is less than ν + 1, then
the data can be demodulated by an FFT and a bank of complex
gains, called a frequency domain equalizer (FEQ). The goal of
the TEQ is to ensure this channel length condition.

Fig. 2 shows the model for MIMO channel shortening.
The received signal rp(k) from antenna p ∈ {1, · · · , P}, is
obtained by passing each signal from user l ∈ {1, · · · , L}
through channel hp,l, adding the L outputs, and adding noise
sequence np(k).

After the CP is added, the last ν samples are identical to
the first ν samples in each transmitted symbol, i.e.

xl (Mk + i) = xl (Mk + i + N) ,

i ∈ {1, . . . , ν} , l ∈ {1, . . . , L} (1)

where M = N + ν is the total symbol duration and k is the
symbol index. The received data rp is given by

rp(Mk+i) =
L∑

l=1

Lh∑
j=0

hp,l(j) xl(Mk+i−j)+np(Mk+i),

and yp, the output of TEQ p, is obtained from rp by

yp(Mk + i) =

Lw∑
j=0

wp(j) rp(Mk + i − j). (2)

Then the final, recombined output is obtained by

y(Mk + i) =
P∑

p=1

yp(Mk + i). (3)

The weights for the linear combination in (3) have implicitly
been absorbed into the P TEQs. Each channel is modeled as
a length Lh + 1 filter, each TEQ is a length Lw + 1 filter, and
each effective channel cp,l = hp,l � wp has length Lc + 1,
where Lc = Lh + Lw, and � denotes linear convolution.

3. EXTENSIONS TO MERRY

This section generalizes the MERRY cost function, and pro-
poses a division-free update rule, an initialization method, and
a symbol synchronization technique, all of which are blind.

3.1. Cost function and algorithm

If the channel length Lh + 1 ≤ ν, then the last sample in the
CP should match the last sample in the symbol. The MERRY
cost function reflects this goal. Since there are ν samples in
the CP, a natural generalization is to compare more than one of
these samples to their counterparts at the end of the symbol:

J =
∑
i∈Sf

E
[|y(Mk + i + ∆) − y(Mk + i + N + ∆)|2] ,

∆ ∈ {0, . . . , M − 1} , (4)

where ∆ is the delay and Sf ⊆ {1, · · · , ν} is an index set.
For MERRY, Sf = {ν}. Different sets allow for the use of
more or less data. Since this cost function allows the option
of using all of the data in the CP, a single sample, or any-
thing in between, we use the name Forced Redundancy with
Optional Data Omission (FRODO) to refer to a stochastic gra-
dient descent of this cost function. An equalization (not chan-
nel shortening) algorithm similar to using FRODO with the set
Sf = {1, · · · , ν} was proposed in [13]. The FRODO cost
function includes [7] and [13] as special cases.

Theorem 1 The FRODO cost function (4) simplifies to

J = 2
∑
i∈Sf

L∑
l=1

σ2
x,l‖ci+∆

l,wall‖2 + 2 |Sf |
P∑

p=1

wH
p Rn,pwp,

(5)
where

‖ci+∆
l,wall‖2 =

∆+i−ν−1∑
j=0

|cl(j)|2 +

Lc∑
j=∆+i

|cl(j)|2 , ∀l, (6)

and where

cl(j) =
P∑

p=1

cp,l(j), j ∈ {0, . . . , Lc} , ∀l. (7)
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Fig. 3. The relation of the windows in the different terms of
the FRODO cost function.

Remarks: The proof is straightforward but consists of te-
dious algebraic manipulation, and is omitted. For L = P = 1
and Sf = {ν}, we have the term i = ν only. The cost function
is the energy of the channel outside of a ν-length window. For
|Sf | = L = 1 and P > 1, we suppress the tails of the aver-
aged channel, c =

∑
p cp. For L > 1 and |Sf | = P = 1, we

suppress the average of the tail energies of the L channels, ef-
fectively shortening all L channels at once. The demodulated
signal will be the sum of the L transmitted signals, but will
be free of ISI and ICI, if this simultaneous channel shortening
is successful. Thus, in an MC-CDMA scenario, the L signals
can now be separated using the spreading codes.

The effect of using |Sf | > 1 can be illustrated as fol-
lows. Consider using the “full” index set, Sf = {1, · · · , ν},
as shown in Fig. 3. Each index term contributes to the cost
function, and the windows for adjacent indices overlap by all
but one sample. Thus, taps farther from the center are more
heavily suppressed. This makes the cost function similar to
the minimum delay spread algorithm [5]. The larger the in-
dex set, the more data gets used in the update (implying faster
convergence), but the smaller the final window size.

Defining “stacked” amalgamations of various vectors as

rp(j) = [rp(j), rp(j − 1), · · · , rp(j − Lw)]T ,

r(j) =
[
rT
1 (j), rT

2 (j), · · · , rT
P (j)

]T

,

r̃i(k) = r(Mk + i + ∆) − r(Mk + i + N + ∆),

w =
[
wT

1 ,wT
2 , · · · ,wT

P

]T

,

the FRODO cost function (4) can be rewritten as

J =
∑
i∈Sf

E

[∣∣∣r̃T
i (k)w

∣∣∣2
]

= wHAw. (8)

To avoid w = 0, we minimize J relative to the output power,

J2 = E
[|y(Mk + io + ∆)|2] = wHCw, (9)

for some io. Equivalently, we may maximize J2/J .
A generalized eigendecomposition algorithm was propos-

ed in [14]. The algorithm is a gradient ascent of wHCw with
the constraint wHAw = 1. In the case of FRODO, we have
blind, stochastic estimates of A and C available at the re-
ceiver. Combining these estimates with the method of [14],

the FRODO algorithm is:

Given ∆ and io, for symbol k = 0, 1, 2, . . . ,

ei(k) = wT (k) r̃i(k), ∀i ∈ Sf

yio(k) = y(Mk + io + ∆) = wT r(Mk + io + ∆)

w(k + 1) = w(k) + µ yio(k)

×
⎛
⎝r∗(Mk + io + ∆) − y∗

io
(k)

∑
i∈Sf

ei(k)r̃∗i (k)

⎞
⎠
(10)

When |Sf | = P = L = 1, we obtain an algorithm that is
similar to MERRY, but without the renormalization.

3.2. Initialization and synchronization

If A and C are ill-conditioned, then FRODO will have slow
modes of convergence. One way to avoid this is to accumulate
estimates of A and C from the data,

Â =
1

K

K∑
k=1

∑
i∈Sf

r̃∗i (k) r̃T
i (k),

Ĉ =
1

K

K∑
k=1

r∗(Mk + io + ∆) rT (Mk + io + ∆),

and then find the generalized eigenvector corresponding to the
maximum generalized eigenvalue of (Ĉ, Â).

MERRY (and hence FRODO) requires a choice of the de-
lay ∆. This issue was not addressed in [7]. We propose the
following heuristic: given the delay ∆peak which maximizes
the energy of the channel in a window of taps ∆peak through
∆peak + ν − 1, a near-optimum delay is

∆ = ∆peak +

⌊
Lw

2

⌋
. (11)

∆peak can be obtained as follows. In the absence of a TEQ
(i.e. w = 1), cp,l = hp,l. From Theorem 1, if Sf = {ν},

J = 2
L∑

l=1

σ2
x,l‖hν+∆

l,wall‖2 + 2
P∑

p=1

σ2
n,p, (12)

Since the delay for which the average windowed channel en-
ergy is highest is the delay for which the average walled chan-
nel energy is smallest, ∆peak can be estimated by minimizing
an estimate of J over ∆, as measured on r(k) rather than y(k):

∆̂peak = arg min
0≤∆≤M−1

K∑
k=1

|r(Mk + ν + ∆)−

r(Mk + ν + N + ∆)|2

This only requires MK multiplications and M (2K − 1) ad-
ditions. This heuristic can also be applied to other design
methods to avoid a global search over the delay parameter.

Fig. 4 shows a plot of the shortening SNR [3] achieved by
FRODO using the optimal and heuristic delays. The perfor-
mance was averaged over ADSL carrier serving area loops 1
through 8 [4]. The heuristic delay provides reasonable perfor-
mance for TEQs with at least 8 taps, and nearly optimal perfor-
mance for TEQs with at least 32 taps. For ADSL, typical TEQ
lengths are 16 or 32 taps. Other heuristics may be used; the
proposed approach is merely one blind method which works.
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Fig. 4. Shortening SNR for FRODO using the optimal and
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0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

ch
an

ne
l 1

0 20 40 60
0

0.2

0.4

ch
an

ne
l 2

0 20 40 60
0

0.5

1

1.5

2

2.5

tap index

sh
or

te
ne

d 
ch

an
ne

l 1

0 20 40 60
0

0.5

1

1.5

tap index

sh
or

te
ne

d 
ch

an
ne

l 2

Fig. 5. Joint shortening simulation. The “filled” stems indicate
the window of ν + 1 taps with largest energy.

4. SIMULATIONS

Fig. 5 shows two channel impulse response magnitudes and the
two effective channels as jointly shortened by FRODO after
20000 symbols. The parameters were L = 2, P = 1, N = 64,
ν = 16, 30 dB SNR, and the TEQ had 32 taps. We assume that
the transmitted sequences are coarsely synchronized, i.e. that
the two cyclic prefixes arrive very roughly at the same time,
otherwise no joint channel shortening algorithm will succeed.
The delay was chosen blindly using the method of Section 3.2.
The tails of the impulse responses of both channels have been
jointly suppressed by a single TEQ, without suppressing the
desired windows of the channels.
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