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ABSTRACT

In a previous paper, we proposed a bitrate maximizing (BM) de-
sign criterion for the time-domain equalizer (TEQ) in a discrete
multitone receiver. This BM-TEQ and the closely related BM
per-group equalizers (PGEQ) get close to the performance of the
so-called per-tone equalization (PTEQ). In this paper, we show
that the BM-TEQ criterion, despite its nonlinear nature, is well
suited for a recursive Levenberg-Marquardt (RLM) based design.
This adaptive BM-TEQ also allows to track slow variations of the
transmission channel and the noise. This RLM-based design uses
the same second-order statistics (SOS) as the earlier presented re-
cursive least-squares (RLS) based adaptive PTEQ and opens up a
complete range of adaptive BM equalizers: from the computation-
ally efficient RLS-based PTEQ with largest memory cost, over the
RLM-based BM-PGEQ with intermediate memory cost, towards
an RLM-based BM-TEQ with considerably smaller memory cost,
but larger equalizer updating complexity.

1. INTRODUCTION

In a classical ADSL discrete multitone (DMT) receiver, a (real) T -
tap channel shortening time domain equalizer (TEQ) is combined
with 1-tap frequency domain equalizers (FEQ). Many TEQ design
algorithms have been developed, but none of them truly optimizes
bitrate (see [1] and references therein). In [2], an attractive alterna-
tive equalization scheme is proposed that always performs at least
as well as - and usually better than - a TEQ based receiver while
keeping complexity during data transmission at the same level. A
complex bitrate maximizing equalizer (BM-EQ) is designed sepa-
rately for each tone, hence the term per-tone equalization (PTEQ).
The drawback of the PTEQ is its memory cost: NaT complex
equalizer taps (with Na the number of active tones) need to be
stored, instead of T taps in case of a TEQ.

In [1], we presented a nonlinear bitrate maximizing (BM) TEQ
cost function based on an exact subchannel SNR model at the FEQ
output. Instead, a BM per-group equalization (PGEQ) scheme can
be devised [3]: the active tones are divided into Ng groups and
each group is provided with a T -tap BM-EQ by solving the BM-
TEQ cost function for that group. A BM-PGEQ with as few as
4 tone groups was found to perform close to the PTEQ in harsh
environments with radio frequency interference (RFI) [3].

In ADSL, the TEQ is typically designed offline: the TEQ is
computed during connection set-up and is then kept fixed during
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data transmission. However, a typical ADSL environment varies
(slowly) with time. Moreover, the newest ADSL2 and ADSL2+
standards [4] support “seamless rate adaptation”: the bitrate and
bit allocation are adapted to varying line conditions. It is then
desirable that the TEQ is adaptive and tracks changing conditions
to keep the bitrate as large as possible. An adaptive equalizer can
also be used for TEQ design: during connection set-up, a so-called
medley signal of several seconds is transmitted for training.

So far, few adaptive TEQ designs have been presented [5, 6, 7].
A fast and reasonably cheap adaptive PTEQ, based on a recur-
sive least-squares (RLS) algorithm, has been presented in [8]. It
has a memory cost of NaT complex equalizer taps and O(NaT )
second-order statistics (SOS) parameters at a computational load
of O(NaT ) operations per update [8].

In this paper, we show that, despite its nonlinear and noncon-
vex nature, the BM-TEQ cost function also appears amenable to
a recursive or adaptive design that is closely related to the RLS-
based PTEQ. This adaptive BM-TEQ then opens up a complete
range of adaptive BM-EQs (BM-TEQ, BM-PGEQ and PTEQ), all
with the same SOS memory cost (O(NaT )), but each with a dif-
ferent number of equalizer taps and equalizer updating complexity.
We refer to [3] for an extended version of this manuscript.

2. NOTATION AND KEY OBSERVATIONS

Here, we introduce the notation and some important basic equali-
ties that will be applied furtheron. Sa is the set of Na active tones;
n is the tone index. N is the (I)FFT size; FSa is a submatrix of
the DFT matrix with the Na active tone rows Sa; the n-th DFT
row is Fn. w is the time-domain equalizer (TEQ, T taps); in the
derivations, we assume a complex TEQ for reasons of concise-
ness. D is the Na × 1 vector of FEQs; Dn is the FEQ for tone
n. θ =

[
wH DH

]H
and θn =

[
wH D∗

n

]H
are joint

TEQ-FEQ parameter vectors. A tilde over a variable distinguishes
frequency-domain symbols from time-domain symbols. k is the
DMT symbol index. The k-th Na × 1 transmitted DMT symbol
vector is x̃k; the symbol on tone n is x̃k,n and has a variance
σ2

n,x̃ = E
{
|x̃k,n|2

}
; ˆ̃xk,n is the FEQ output. Im is the m × m

identity matrix. a � b is the pointwise multiplication of a and b.
diag(a) is a diagonal matrix with a on the diagonal.

A first key observation exploits the associativity property in:
ˆ̃xk =D � ỹk,w = D �FSa (Ykw)︸ ︷︷ ︸

yk,w

= D � (FSaYk)︸ ︷︷ ︸
Ỹk

w

ˆ̃xk,n =Dnỹk,n,w = DnFn (Ykw)︸ ︷︷ ︸
yk,w

= Dn (FnYk)︸ ︷︷ ︸
ỹk,n

w (1)

where Yk is an N × T Toeplitz matrix of received samples with[
yk,0 · · · yk,−T+1

]
on the first row and

[
yk,0 · · · yk,N−1

]T
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in the first column. It says (both for all tones and tone n) that the
DFT of the convolution of the k-th DMT symbol and the TEQ,
Ykw, is equal to a linear combination w of the T outputs of a
sliding DFT of the unequalized k-th DMT symbol, Ỹk = FSaYk.
A second key observation states that the sliding DFT output Ỹk

can be computed efficiently (based on 1 FFT ỹk,n = ỹk,n[1] =

Fn

[
yk,0 · · · yk,N−1

]T
, T − 1 differences ∆yk[t] =

yk,−T+t−yk,−T+N+t, 1 ≤ t ≤ T−1 and Na(T−1) recursions)
using the recursion in

ỹk,n =
[

∆yk ỹk,n

]
︸ ︷︷ ︸

zk,n

⎡
⎢⎢⎢⎣

0 · · · 0 1
... . .

.
. .

.
αn

0 1 . .
. ...

1 αn · · · αT−1
n

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Pn

(2)

with αn = 1√
N

e(−j2π(n−1)/N). Both key observations underlie
the RLS-based PTEQ [2, 8] and the here developed adaptive BM-
TEQ. Based on the key observations, we obtain the following SOS
definitions, used throughout the paper:

E
{
|ỹk,n,w|2

}
=wHE

{
ỹH

k,nỹk,n

}
w = wHΣ2

n,ỹw (3)

E
{
ỹ∗

k,n,wỹk,n

}
=wHE

{
ỹH

k,nỹk,n

}
= wHΣ2

n,ỹ (4)

E
{
x̃∗

k,nỹk,n,w

}
= E

{
x̃∗

k,nỹk,n

}
w = Σn,x̃ỹw (5)

Σ2
n,ỹ =PH

n E
{
zH

k,nzk,n

}
Pn = PH

n Σ2
n,zPn (6)

3. A JOINT BM-TEQ-FEQ CRITERION

In [1], we introduced the nonlinear BM-TEQ criterion:

arg max
w

bDMT = arg min
w

∑
n∈Sa

log

(
wHBnw

wHAnw

)
(7)

where the tone-dependent matrices An and Bn are independent of
w and depend on the SOS σ2

n,x̃, Σ2
n,ỹ and Σn,x̃ỹ defined in (3-5).

This BM-TEQ-only criterion follows from a constrained nonlinear
optimization problem in the joint parameter vector θ, which is the
starting point for a new joint BM-TEQ-FEQ criterion:

max
θ

∑
n∈Sa

log2

(
1 +

SNRn,θn

Γn

)
(8)

with SNRn,θn =
σ2

n,x̃

E
{
|ẽk,n,θn |2

} =
σ2

n,x̃

E
{
|Dnỹk,nw−x̃k,n|2

} (9)

subject to Dn =
E

{
|x̃k,n|2

}
E

{
x̃∗

k,nỹk,n,w

} =
σ2

n,x̃

Σn,x̃ỹw
, ∀n ∈ Sa (10)

i.e., maximizing (over θ) the number of bits per DMT symbol (8),
subject to the use of unbiased MMSE FEQs (10), which render the
subchannel SNR model in (9) exact. A constrained optimization
criterion is typically restated as a Lagrangian cost minimization:

JL(θ, λ) =
∑

n∈Sa

[
log

(
1 +

SNRn,θn

Γn

)−1

−�
{
λ∗

n

(
DnE

{
x̃∗

k,nỹk,n,w

}
− σ2

n,x̃

)}]
(11)

with λn the Na Lagrange parameters and where the R-operator
ensures a real constraint term (which only matters for a real TEQ).
Setting the gradient w.r.t. Dn, ∇DnJL, to zero, i.e.,

γn,θnE
{
ỹ∗

k,n,wẽk,n,θn

}
− λnE

{
ỹ∗

k,n,wx̃k,n

}
= 0 (12)

where γn,θn =
SNR2

n,θn

σ2
n,x̃

(SNRn,θn+Γn)
is a tone-dependent weight,

results in λn =
γn,θn

SNRn,θn
[3]. Combined with the gradient w.r.t.

w, ∇wJL:∑
n∈Sa

γn,θnD∗
nE

{
ỹH

k,nẽk,n,θn

}
− λnD∗

nE
{
ỹH

k,nx̃k,n

}
(13)

the gradient of JL w.r.t. θ can be written compactly as:

∇θJL =

[
∇wJL

∇DJL

]
= E

{
Y̌H

k,θdiag (γθ) ěk,θ

}
(14)

where the Na × 1 vector γθ has entries γn,θn , and where the
Na × (T + Na) matrix Y̌k,θ and Na × 1 vector ěk,θ are defined
as:

Y̌k,θ =
[

diag (D) Ỹk diag(Ỹkw)
]

(15)

ěk,θ = ˆ̃xk − ρ
−2
θ � x̃k = D �

(
Ỹkw

)
− ρ

−2
θ � x̃k (16)

The vector ρ−2
θ is short-hand notation for a vector with as en-

tries the inverse of ρ2
n,θn

= 1 + 1
SNRn,θn

(valued between 0

and 1, but typically close to 1 and accounting for the use of un-
biased MMSE FEQs [1], [3]); ěk,θ in (16) is a vector of errors
between the FEQ outputs ˆ̃xk,n (1) and virtual symbols ρ−2

n,θn
x̃k,n.

Replacing (14) with an exponentially weighted time-average over
K DMT symbols results in a generalized version (with weighting
γθ and multiple-error vector ěk,θ) of the orthogonality condition
that is typically encountered when solving least-squares (LS) prob-
lems:

∇θJK,NL−WLS =

K∑
k=1

λK−kY̌H
k,θdiag (γθ) ěk,θ = 0 (17)

The weights γθ assume knowledge of the optimal SNRn,θn (9)
at time K, hence the optimal TEQ, FEQs and estimates of Σ2

n,ỹ

and Σn,x̃ỹ. Adopting the ideas from [11, 12] to solve weighted
LS problems with data and parameter dependent weights, γθn

is
replaced by an instantaneous a priori estimate, i.e., based on the
previous parameter estimates wK−1 and DK−1,n:

γ̂K,n,θK−1,n =
ŜNR

2

K,n,θK−1,n

σ2
n,x̃

(
ŜNRK,n,θK−1,n + Γn

) (18)

with ŜNRK,n,θK−1,n =
σ2

n,x̃

|DK−1,nỹK,nwK−1 − x̃K,n|2

ŜNRK,n,θK−1,n is also used to approximate ρ−2
n,θn

x̃k,n in (16).
With these approximations (18), the gradient (17) then also ap-
plies to the following nonlinear weighted least-squares (NL-WLS)
problem with varying weights γ̂K,θK−1

:

JK,NL−WLS(θ) =

K∑
k=1

λ(K−k)
∥∥∥√

γ̂K,θK−1
� ěk,θ

∥∥∥2

(19)

where ěk,θ and, hence, JK,NL−WLS(θ) depend nonlinearly on θ.
The simulations of Section 5, using the adaptive algorithm devel-
oped in Section 4, confirm that the NL-WLS joint BM-TEQ-FEQ
cost function (19) achieves the same performance as the BM-TEQ-
only (7), despite the introduced approximations (18). The appear-
ance of a least-squares (LS) problem does not come as a surprise,
despite the nonlinear cost function (7): the denominator of SNRn

(9) is equal to the mean-square error (MSE) at the FEQ output; an
MSE criterion is often adopted when designing an adaptive filter
and naturally leads to a (linear or nonlinear) LS problem.
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4. AN ADAPTIVE JOINT BM-TEQ-FEQ ALGORITHM

In this section, we solve the NL-WLS cost function (19) recur-
sively (or adaptively) at each time k, based on a recursive Leven-
berg-Marquardt (RLM)1 updating of the (Na +T )×1 joint TEQ-
FEQ parameter vector θ [9, 10]. From (19), one easily obtains the
joint TEQ-FEQ updating rule:

θk ← θk−1 − R−1
k,θk−1,δk

gk,θk−1 (20)

where the gradient estimate gk,θ and the regularized approximate
Hessian estimate Rk,θ,δ (both typical of an RLM algorithm) are2

gk,θ = Y̌H
k,θdiag

(
γ̂k,θk−1

)
ěk,θ (21)

Rk,θ,δ =

k∑
κ=1

Y̌H
κ,θdiag

(
γ̂k,θk−1

)
Y̌κ,θ + δIT+Na (22)

After each update, the TEQ is normalized (and the FEQs are scaled
accordingly) to solve the parameter ambiguity in (19). Rk,θ,δ in
(22) is a 2 × 2 block autocorrelation matrix estimate:

Rk,θ,δ =

[
Ek,D Fk,θ

FH
k,θ Gk,w,diag

]
(23)

The submatrices Ek,D (T × T ), Fk,θ (T × Na) and Gk,w,diag

(Na × Na and diagonal) follow from (3), (4)3:

Ek,D =
∑

n∈Sa

γ̂k,n,θk−1,n
|Dn|2 Σ2

k,n,ỹ + δIT (24)

FH
k,θ =

⎡
⎢⎣

...[
γ̂k,n,θk−1,n

Dn

(
wHΣ2

k,n,ỹ

)]
...

⎤
⎥⎦

�⏐⏐⏐⏐⏐�Na rows (25)

Gk,w,diag =diag
([
· · ·

[
γ̂k,n,θk−1,n

(
wHΣ2

k,n,ỹw
)

+ δ
]
· · ·

])
(26)

Making use of (21), the block matrix inverse R−1
θ :[

Q−1
θ −Q−1

θ FθG−1
w,diag

−G−1
w,diagF

H
θ Q−1

θ G−1
w,diag

(
INa + FH

θ Q−1
θ FθG−1

w,diag

) ]
(27)

with
Qθ = ED − FθG−1

w,diagF
H
θ (28)

and the definition of Y̌k,θ (15), we obtain a stochastic-Newton-
like updating equation for w in (20):

wk ← wk−1 −Q−1
k,θk−1

ȲH
k,θk−1

(
γ̂k,θk−1

� ěk,θk−1

)
︸ ︷︷ ︸

∆wk

(29)

with Qk,θ and ěk,θk−1 defined in (28) and (16), respectively, and

ȲH
k,θ = ỸH

k diag (D)∗ − FθG−1
w,diagdiag (ỹk,w)∗ (30)

Thanks to the block structure and the diagonal submatrix
Gk,w,diag, only the inverse of the full T × T matrix Qk,θ needs
to be computed. The FEQ updating in (20) reduces to

1As with the PTEQ, stochastic gradient algorithms are found to con-
verge too slowly.

2We omit the dependence on the update index of θk−1 and δk for con-
ciseness.

3The subscript k distinguishes SOS estimates Σ2
k,n,ỹ from the true

SOS Σ2
n,ỹ .

Dk ← Dk−1 − G−1
k,w,diag

[
γ̂k,θk−1

� ỹ∗
k,w � ěk,θk−1

+FH
k,θk−1∆wk

]
(31)

Despite the approximate Hessian Rk,θk−1,δk
having size (T +

Na) × (T + Na), only the SOS estimates Σ2
k,n,ỹ are required

to construct it. These are the exact same SOS as needed for the
(square-root) RLS-based PTEQ [8]. Also here, as in [8], the SOS
memory cost can be further reduced by exploiting the second key
observation (2), which gives rise to (6): storing the upper-triangular
Cholesky factor Lk,n of Σ2

k,n,z instead of Σ2
k,n,ỹ reduces the to-

tal SOS memory to T (T−1)
2

real coefficients for the T − 1 first,
real, tone-independent columns of Lk,n (which should only be
stored and updated once) plus (2T − 1)Na coefficients for the
tone-dependent complex last column of Lk,n. In contrast to the
RLS-based PTEQ, the SOS updating is computationally not the
most demanding part of the adaptive joint BM-TEQ-FEQ. The
complexity is rather dominated by O(NaT 2) computations for the
computation of Qk,θ, which requires Σ2

k,n,ỹ, rather than Σ2
k,n,z.

Avoiding the transformation (6), which can be done efficiently
with O(NaT 2) computations [3], is an exclusive, computational
advantage of the adaptive PTEQ over the BM-TEQ and BM-PGEQ:
O(NaT ) computations suffice for the RLS-based PTEQ updating.

Table 1 compares the memory cost and computational com-
plexity of the equalizer filtering and updating for the BM-TEQ,
BM-PGEQ (with Ng tone groups) and PTEQ. It includes the dom-
inant terms in memory cost and computational complexity of the
equalizer filtering and updating in equivalent number of real co-
efficients and multiplications. Memory and complexity figure es-
timates are also included for Na = 224, T = 16 → 32 and
Ng = 4. The SOS memory cost is the same and the equalizer fil-
tering cost highly comparable for all BM-EQs. The PTEQ needs a
large number of equalizer taps but has a computationally advanta-
geous equalizer updating. We refer to [3] for a detailed discussion.
In an application such as ADSL, equalizer updating (for design
and tracking) can typically be done at a rate that is slower than
the equalizer filtering rate of 4kHz: given that around 16000 DMT
training symbols are available during connection set-up while con-
vergence occurs within 200 to 300 symbols (see Section 5), then
the updating speed can be decimated with a factor 50 to 80, result-
ing in 3.4 to 10.7 real multiplications per second for the PTEQ and
28.5 to 168 real multiplications per second for the BM-TEQ.

In [3], we discuss some further refinements to the algorithm.

• In case of an RLM algorithm, the choice of the exponential
weighting factor for estimating the SOS does not only in-
fluence the tracking speed and estimation accuracy, but also
the convergence speed [9]. Therefore, we increase λ from
0.9 (fast tracking during first 400 updates) over 0.95 (next
400 updates) to 0.99 (after 800 updates for high accuracy).

• The diagonal of Rk,θk−1,δk
, especially Gk,wk−1,diag, is

not constant and can have a large dynamic range. This influ-
ences the condition of the approximate Hessian badly. We
suggest a (cheap) energy normalization through a diagonal
transformation of Rk,θk−1,δk

and gk,θk−1 . This reduces
the diagonal elements of Rk,θk−1,δk

to 1 + δk.
• Both convergence speed and stability are affected by a suit-

able choice of the regularization parameter δk in (22): a
too small δk could cause the RLM algorithm to go unsta-
ble, while a too large δk could induce slow convergence in
directions of the parameter space that correspond to small
eigenvalues. The parameter δk should be adapted, as the

IV - 1059

➡ ➡



Memory cost Computational cost per update
EQ taps (K = 103) SOS coeffs (×103) Filtering (excl. FFT)

(×103)
Updating (×103)

real joint BM-TEQ-FEQ T + 2Na 464 → 480 2NaT 7 → 15 6NaT
or NT

22 → 43 or
8 → 16

8.5NaT 2 570 → 2100

real joint BM-PGEQ-FEQ NgT +2Na 512 → 528 2NaT 7 → 15 6NaT 22 → 43 8.5NaT 2 570 → 2110
complex PTEQ 2NaT 7K → 14K 2NaT 7 → 15 2NaT 8 → 15 18NaT 68 → 134

Table 1. Dominant terms in memory cost and computational complexity of equalizer filtering and updating in equivalent number of real
coefficients and multiplications. Memory and complexity figure estimates for Na = 224, T = 16 → 32 and Ng = 4 tone groups.

condition of the first term in (22) depends on the estimates
θk−1 and hence changes during convergence. Based on the
ideas in [10], we propose an adaptation rule for δk that is
based on the ratio of instantaneous estimates of the actual
and predicted cost reduction of Jk,NL−WLS (19).

5. SIMULATIONS

We include simulations for the downstream CSA4 loop (tones 33
to 256) with moderate front-end filtering.The noise is a superpo-
sition of AWG noise at -140dBm/Hz, residual echo and near-end
crosstalk from 24 ADSL disturbers. We also include the harsh
case of severe RFI (7 RFIs with powers between -30 and -50dBm)
which can be treated effectively with the PTEQ. Further specifica-
tions and an extensive simulation section are included in [3].

In [1], the BM-TEQ was found to approach the PTEQ per-
formance very closely, despite possible local minima of the non-
convex BM-TEQ cost function. This result is confirmed here,
when comparing the RLS-based PTEQ with the here presented
RLM-based BM-TEQ. Figure 1 shows bitrate convergence curves
(for T = 32) as a function of the update index. The PTEQ (with
λ = 0.999) is compared with the BM-TEQ and a BM-PGEQ with
4 equally sized tone groups. If no RFI is present (thick lines), they
all reach the same bitrate of 8.4Mbps; the PTEQ and BM-TEQ
curve almost coincide, while the BM-PGEQ converges the fastest
in around 100 updates. If RFI is present (thin lines), the BM-TEQ
achieves 6.8Mbps, i.e., less than 300kbps (or only 4%) below the
PTEQ bitrate; the BM-PGEQ fills the gap in convergence speed
and bitrate between the PTEQ and the BM-TEQ. The convergence
time can be decreased by initializing the RLM algorithm with a
cheaply computed suboptimal TEQ (e.g., an MMSE-TEQ, see the

thick dotted line), instead of w0 =
[

1 0 · · · 0
]T

else-
where. The same thick dotted line also shows that the adaptive
BM-TEQ is capable of tracking the disappearance of 2 RFIs at
time instant 500.
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