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ABSTRACT

The adaptive nonlinear predistorter is an effective technique to
compensate the nonlinear distortion existing in a digital
communication system. In this paper, we first apply the recently
developed nonlinear filtered-x LMS and adjoint nonlinear LMS
algorithm to design an adaptive Hammerstein nonlinear
predistorter for a high power amplifier (HPA) preceded by a
linear system. Compared with the adaptive Hammerstein
nonlinear predistorter with either direct learning or indirect
learning, our developed adaptive nonlinear predistorter is
computationally efficient and can be easily implemented via
DSP hardware and software. By exploring the robustness of our
proposed algorithm and the statistical properties of our virtual
filter, we further simplify the adaptive Hammerstein nonlinear
predistorter to further reduce the computational complexity and
implementation cost. Simulation results confirm the
effectiveness of our proposed algorithm.

1. INTRODUCTION

High power amplifiers (HPAs) are known to be the major source
of nonlinear distortion in digital communication systems [1]. An
adaptive nonlinear predistorter is an effective technique to
compensate this type of nonlinear distortion because it varies
with time and temperature. However, most available adaptive
nonlinear predistorters are based on indirect learning techniques
[2,3]. The adaptive nonlinear predistorters based on direct
learning techniques [4-6] are computationally expensive and/or
complicated in structure. In [7], we introduced an efficient
adaptive nonlinear predistorter with a simple structure based on
the direct learning algorithm, which can greatly reduce the
computational complexity and memory requirements of these
algorithms. Simulation results in [7] indicated an improvement
of 5-10 dB in mean square error (MSE) compared with an
indirect learning algorithm.

However, that algorithm is based on a general polynomial
nonlinear model, which may not be suitable (or efficient) for
modeling a high power amplifier in digital communication
systems like OFDM and CDMA. This is because HPAs usually
demonstrate memoryless nonlinear distortion. As a result, people
often use a block oriented model that models the HPAs
connected with a linear filter to reduce the number of
coefficients and thus the computational complexity [8]. Recent
research results show that HPAs exhibit some memory effects for
a wide-bandwidth input signal [9]. This memory effect can be
absorbed into the linear filter model [3], [10].

As a result, we are going to use a Wiener nonlinear model to
model our HPA system in this paper. This is because the HPAs
in digital communication systems such as an OFDM system are
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usually preceded by a linear pulse shaping filter, and the Wiener
system can also model the HPA with memory. We are going to
apply the recently developed nonlinear filtered-x LMS and
adjoint nonlinear LMS algorithm [7] to design an adaptive
Hammerstein nonlinear predistorter for a Wiener model HPA
system. Compared to the adaptive Hammerstein nonlinear
predistorter with direct learning and indirect learning, our
developed adaptive nonlinear predistorter is computationally
efficient and can be easily implemented by DSP hardware and
software. Then, by exploring the robustness of that proposed
algorithm along with its statistical properties, we propose a
simplified adaptive Hammerstein nonlinear predistorter that
further reduces the computational complexity and
implementation cost. The same method introduced in this paper
can be extended to compensate the Hammerstein nonlinear
model or a linear-nonlinear-linear (LNL) block oriented model.

We arrange this paper as follows. The adaptive nonlinear
predistorter based on direct learning is briefly reviewed in
section 2. We then develop an adaptive Hammerstein nonlinear
predistorter in section 3. Further simplification of the adaptive
Hammerstein nonlinear predistorter is proposed and discussed in
section 4. Simulation results are given in section 5. We draw our
conclusion in section 6.

2. ADAPTIVE NONLINEAR PREDISTORTER BASED ON
DIRECT LEARNING METHOD

The LMS adaptive nonlinear predistorter introduced in [7] is
based on a general nonlinear polynomial model

y(n)=X"'(m)W(n) (1)

where
X(")=[¢1(f(n)) ¢2(f(n)) ¢Q(f(’1))]' 2)
W(rz):[w1 wy oo WQ]' 3)

X(n)and W(n) are the state and the coefficient vectors of the
nonlinear system. Xx(n) represents the input sequence to a
nonlinear device (i.e. x(n)and its delays), y(»)is the output,
w,(n)is the it complex coefficient at timen, Q is the total
number of terms, and ¢ (x(n)) is the one term in the polynomial
that is a function of Xx(n) and differentiable with x(n)
everywhere except at a limited number of points. Consequently,
the general polynomial nonlinear model is linear with regard
tow,(n).

Using the general nonlinear polynomial model, we
developed an adaptive nonlinear predistorter based on the direct
learning algorithm. We called it the nonlinear filtered-x LMS
algorithm, and its block diagram is given in figure 1. In the
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figure, W(n) and H(n) are the coefficient vectors of the adaptive
nonlinear predistorter and identification filter, respectively. The
block H(n) represents a nonlinear device. The adaptive nonlinear
predistorter input is #(n) and its output, denoted by y(n), is fed
into the nonlinear device H(n). We want the output of the
nonlinear device, denoted by d(n), to be as close as possible
tod(n), which is a delayed and amplified version of the input
u(n). The update function of the adaptive nonlinear predistorter
W(n) is

W (n) = W(n—l)+ue*(n)Uf(n) 4)
where

M -1 -

Upm= I grmU(n=r)=Ulm*H(n ©)
r=0
Hmy=[g0,n) g(,n) g(M —1,n)] (6)
od(n)

) =———— 7
s =2 ()

The combiner generates every nonlinear state U(n). H(n)is
called the virtual filter of H(n). This algorithm is exactly the

same as the nonlinear filtered-x LMS introduced in [4], except
that by introducing the virtual filter, we have achieved a new
structure that is more easily implemented.

However, the developed algorithm remains computationally
expensive. One reason is that every state in U(n) must be filtered
by the virtual filter. We further introduced the adjoint LMS
algorithm, whose update function is

W(n+1)= W(n)+ue;(n)U(n—M+1) ®)
with
* * ~ %
ef(n) =e (mM)*H (n) )

ﬁ*(n):[g(M—l,n) g(M-2,n-1) 2(0,n— M +1)] (10)

M is the memory of H(n). From this perspective, we find that we
are only required to filter the error signal with an adjoint virtual
filter ' (n) (given in (10)) and adding some delays to the
nonlinear state. This algorithm requires far fewer computations
and memory. Our simulation results indicate that this efficient
predistorter retains the good performance of the more complex
nonlinear filtered-x LMS. ﬁ
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Figure 1. Adaptive nonlinear predistorter based on the nonlinear
filtered-x LMS
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Figure 2. Adaptive nonlinear predistorter based on adjoint
nonlinear LMS
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3. ADAPTIVE HAMMERSTEIN NONLINEAR
PREDISTORTER

As discussed in the introduction, we model the HPA preceded
with linear filter via a block oriented model — the Wiener
nonlinear model. This is a memoryless nonlinear system N
preceded by a linear filter L(n). The Wiener nonlinear model can
be linearized by an adaptive Hammerstein nonlinear predistorter
as in figure 3. This predistorter is the cascade of a memoryless
adaptive nonlinear filter P(n) and an adaptive linear filter W(n).
Using the method of section 2, we need to first find the virtual
and adjoint virtual filters for the path from the adaptive filter
output to the point of summation.

From figure 3, this path is the Wiener nonlinear filter. So, we
can find the virtual filter as

7 ()= d(n) d(n) ad(n) ad(n)
1 W) wn-1" "dmn-r) Wn-N+1)
_9d(n) dz(m) dz(m) dz(n) 1 (1
T dz(n) (n) -1 dyin-N+1)
Ly
= 320n) L(n)=N () L(n)

N'|z(n)is the differentiation of a memoryless nonlinear
function with respect to its input z() and estimated at that
input. The block diagram of the virtual filter V(n) is shown in
figure 4(a). In figures 4-6, the box is a linear filter and the
triangle is a gain. The adjoint virtual filter can be obtained from
equation (10)

171*(n) [LIN-DN'|  L(N-2)N'

z(n) z(n-1)’

-, L(N=r)N'

(12)

-, L(O)N"'

]

zn—r+1)" z(n—N+1)

This is shown in figure 4(b). Note that the time-varying gain
must be before the linear FIR Filter. The path from the output of
the adaptive filter P(n) to the summation point is also a Wiener
filter. Thus, we have the virtual filter

V=N 2P (@ * L] (13)

The * denotes linear convolution. The corresponding adjoint
virtual filter may be obtained as before.

Based on this virtual filter and update function (4), we derive
the update function for the adaptive filters in the Hammerstein
predistorter

W (n) = W(n—l)+ue*(n)Sf(n) (14)
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P(n) = P(n—1)+ue*(n)Uf(n) (15)

The block diagram is given in figure 5. Inspecting these
functions and the updating functions in [5], we see that eq. (14)
and (15) are the same as those introduced in [5]. However, using
our virtual filter, we find that our configuration has a much
simpler structure that is easy to implement. Here, S(n), which is
generated by the combiner 2 in figure 5, represents [s(n) s(n-1)

. s(n-M+1)]. Due to the time-varying nature of the virtual

filter I7l(n) , all states in S(n) must be filtered by I7l(n) .
With the adjoint virtual filters and update function (8), we

have the updates for the adjoint nonlinear LMS algorithm (and
shown in figure 6)

W(n) = W(n—l)+ue;,1(n)S(n) (16)
P(n) = P(n—1)+ ue; LU () (17)

Note that the predistorter using the nonlinear adjoint LMS
algorithm has a much simpler structure, and requires less
computation, than the one based on the nonlinear filtered-x
LMS. Table 1 gives out the number of multiplications for each
algorithm per iteration.
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Figure 3. the Hammerstein nonlinear predistorter AND the
Weiner nonlinear model of HPA system
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Figure 4. Block diagram of virtual filter (a) and adjoint virtual
filter (b) for the Wiener nonlinear model

H Adaptive
’ Algorithm

Adaptive |
Algorithm

Uttn)
Figure 5. Adaptive Hammerstein Nonlinear Predistorter Based
on nonlinear filtered-x LMS

Combiner

U(n)

~M-N+2
Z

L)
Adaptive
> Algorithm ¢ enm) W*(n)

N

» Adaptive
Algorithm esi(n)

Figure 6. Adaptive Hammerstein Nonlinear Predistorter Based
on nonlinear adjoint LMS

4. SIMPLIFICATION USING PHASE ROBUSTNESS

The nonlinear filtered-x LMS and adjoint LMS algorithm case
can be regarded as an extension (or as a generalization) of the
linear filtered-x LMS and adjoint LMS. The main idea behind
nonlinear filtered-x LMS and nonlinear adjoint LMS is common
to its linear counterparts — to keep the reference signal and error
signal aligned in time. The virtual filter and adjoint virtual filter
in the two algorithms serve this purpose. However, to keep the
two signals aligned, we are only required to filter using a filter
with nearly the same phase response as the virtual filter or
adjoint virtual filter in the nonlinear filtered-x LMS algorithm
and nonlinear adjoint LMS algorithm. With this proviso, the
adaptive filter should still converge for a sufficiently small step
size. According to [11], we only need a filter with the phase
frequency response within +90° of the actual phases response.
As a result, we can say the nonlinear filtered-x LMS algorithm
and nonlinear adjoint LMS algorithm are robust, and can tolerate
some estimation errors.

From this notion, we closely examine the virtual filter of the
Wiener model. First, consider that the expected value of
N'|z(n) is a constant. So the pure gain N'|z(n) will not
introduce phase delay and hence we can disregard it. Thus, we
can further simplify the adaptive filter, which has the similar
structure as in figure 6, but without the pure gain N'|z(n).
However, we must exercise some caution with the step size in
this case. Consider that the update function of (16) becomes

W(n)=W(n—1)+u'err; (n)S(n) (18)

where the err;, is corresponding to e;,l in figure 6 but without

pass thought the gain N'| z(n) . If we take u'= uE[N'| z(n)] , then
they are the same. The simplification will affect the step size
bound of the adaptive algorithm. If E[N'|z(n)]<1 is a small
value, then u' should take a value much less than x4 for

convergence. This simplification can reduce the computational
count and simplify the structure in the update of the adaptive
nonlinear predistorter. Even more importantly, in the
identification procedure, we find that we need only identify the
linear part of the Wiener model because the filtering does not

cause a shift of more than +90° .
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The number of multiplications of the above-discussed
algorithms per iteration is given in table 1. This number ignores
the nonlinear system identification procedure that is required by
all algorithms. In the table, M and N represent the order of the
W(n) and L(n) respectively. Q; and Q, represent the order of
nonlinearity in P(n) and N(n) respectively. From this table, we
see that our proposed methods can greatly reduce the
computational complexity.

Hammerstein Predistorter Number of Multiplications
Nonlinear Filtered-x LMS (O +3+N)M+(N+2)0,+0,-1
Nonlinear Adjoint LMS 3M+30;+N+Q,
Further Simplification 3M+30,+N+1

Table 1. The number of multiplications for the different
algorithms per iteration

5. SIMULATION

In the following simulations, we use the Wiener nonlinear HPA
model from [6] and assume an ideal channel without fading and
noise. A 16-QAM constellation signal is modulated and
transmitted through the predistorter, linear filter, and HPA. From
figure 7, we see that the proposed methods can successfully
compensate most of the distortion. The relation between OBO
and remaining mean square error (MSE) based on different
algorithm are also given in figure 8, which shows our proposed
methods have remaining MSE figures similar to the method
introduced in [6], but are much more efficient in structure and
computational requirements.

6. CONCLUSION

In this paper, we successfully applied our recently developed
adaptive nonlinear predistorter based on direct learning
technique to design an adaptive Hammerstein nonlinear distorter
for a Wiener model HPA system. Compared with the same
model nonlinear predistorter, ours has better performance, a
simpler structure and lower computational efficiency. By
examining the robustness and statistical properties of the
developed algorithm, we are able to propose a simplified
adaptive nonlinear predistorter that further reduces the
computational complexity and implementation cost. Similar
methods can be applied to other block oriented nonlinear models
such as the Hammerstein and the linear-nonlinear-linear (LNL)
models. Simulation results confirm the effectiveness of our
proposed method.
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Figure 7. Received 16-QAM constellation signal without (left)
and with (right) our proposed predistorters
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Figure 8. OBO versus MSE for proposed different nonlinear
predistorter
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