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ABSTRACT

We derive the Cramer-Rao Bound (CRB) on the joint estimates of
the sampling clock offset and the channel impulse response when
a training sequence is available. Simple closed form expressions
are obtained for the CRB in the case where the observation win-
dow is large, and furthermore in the case where the channel de-
gree is large. Our derivations are suited for single-carrier as well
as for multi-carrier Orthogonal Frequency Division Multiplexing
(OFDM) schemes. Data-aided Maximum-Likelihood (ML) esti-
mates are also carried out.

1. INTRODUCTION

For a digital communication system to work properly, the receiver’s
clock has to be synchronized with the transmitter’s. Often, es-
timating the optimum sampling delay boils down to recovering
the so-called constant symbol timing. Nevertheless, as soon as
the transmit burst becomes very long or an OFDM system with a
large number of subcarriers is considered, the clock frequency off-
set mismatch has to be taken into account. Indeed this offset leads
to an linearly time-varying sampling delay over the entire observa-
tion window. For instance, in Very high speed Digital Subscriber
Lines (VDSL) transmissions, even over the duration of one OFDM
symbol, the clock frequency offset effect can not be neglected
since the value of the product of the relative clock frequency off-
set with the number of carriers (that can reach respectively ����

and 4096 in VDSL [1]) is large ([2]). As an other example, Power
Line Transmissions (PLT) in the band ������ ������ [3] show
a similar behavior with respect to this phenomenon. The litera-
ture proposes several data-aided (i.e., training sequence based) al-
gorithms to perform the estimation of the clock frequency offset
([4, 5, 6, 7, 8]). Obviously, even if some authors assume the chan-
nel perfectly known at the receiver, it is more realistic, as done
hereafter, to consider the joint estimation of the clock frequency
offset and of the channel.
In order to benchmark the existing estimates, it is worth deriving
the Cramer-Rao bound of the joint channel and clock frequency
offset estimators. This will be the purpose of this paper.
In section 2 the signal model is presented. Section 3 is devoted to
the derivation of the CRB. In section 4, we simplify the closed-
form expressions of the CRB when the observation window length
grows large as well as when the channel degree is large as it is
usual in wireline applications (in VDSL and in PLT applications,
the channel degree is often of order 100). In section 5 the ML
estimator is presented together with a simplified version. Some
numerical illustrations are drawn in section 6.
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2. MODEL

The continuous-time received signal ����	 writes as follows :

����	 

�

���

������� �� 	 � ����	 (1)

where �������is the training sequence known to the receiver. The
unknown impulse response ����	 represents the complete channel
that includes the transmit filter, the propagation channel, and the
receiver low-pass filter. Throughout the paper, we assume that the
filter ����	 is time-limited and causal. Although unbounded in the-
ory, the frequency support of ����	 will in practice be assumed to
coincide with ���	��� �	�� � for some known parameter �. Fi-
nally ����	 is an additive noise independent of the data.
Equation (1) models a large number of digital signals : in the case
of standard single carrier modulated signals, �������are the train-
ing symbols, � is the symbol rate, and � coincides with � � 

where 
 is the roll-off factor. In a multicarrier OFDM setting,
�������represents the output of the IFFT device, � is the sam-
pling period, and � � �.
If the transmitter and receiver clocks were perfectly synchronized,
then the signal ����	 would have been sampled at the period �� 

�	�, where � � � is an integer ”oversampling factor” satisfying
the conditions of the sampling theorem. In the absence of synchro-
nization, ����	 is sampled at �� � Æ	�� instead of ��, where Æ is
an unknown offset lying in the known interval ��Æ���� Æ����. The
discrete-time signal ���	 
 ������ � Æ	��	 thus writes

���	 

�

���

�������� � �� � �Æ��	 � ���	

In the sequel, ���	 
 ����� � Æ	���	 is assumed white Gaussian
circular with zero-mean and known variance �� 
 ������	�� �. Let
�������be the sequence defined as �� 
 ���� if �	� � �, and
�� 
 � otherwise. The previous equation then takes the following
form

���	 

�

���

���� ���� � � �Æ	��	 � ���	

Because ����	 is band-limited, it can be written as

����	 

�

���

������� ���	

where ����	 is any interpolation filter with �	�� as a cut-off fre-
quency ([9]). As ����	 is time-limited, ����	 is assumed time-
supported by ������� and the sequence �������is assumed finite
with length � � �.
The paper focuses on the joint estimation of the sampling clock
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offset Æ and of the channel impulse response � � ���� � � � � ���� ��

with �� � �������. Clearly the interpolator ����� is available at
the receiver while the vector � � ���� � � � � ���

� is not.

3. EXACT CRAMER-RAO BOUND

��� being the duration of the observation window, we have

	�
� �

�����

�����

��

���

����������� � 
Æ� � �
� (2)

where ���� � ������� and �� is the smallest integer such that
�� � �Æ���. The aim of the section is to derive CRB on
����� Æ�� where �� � ��������������. Notations ���� and ����
stand for real and imaginary parts of a complex-valued matrix re-
spectively. By setting �� � �	���� � � � � 	�� � ����, equation (2)
can be put in a matrix form :

�� � ���� �Æ��� �� (3)

where

�� �

��� �� �
. . .

� ����

��� � �� �Æ� �

��� ����
...

���� � ��Æ�

��� �

with �� � ������ � � � � � �������� 	��� and with ��
Æ� being
the �	���������������Toeplitz matrix having ���
Æ�
�� �� �� � � � � �� as its first row and ���
Æ����� � � � � ��
Æ����
��� �� � � � � ��� as its first column.
The vector �� is circular multivariate Gaussian process with un-
known mean� � ���� �Æ�� and known covariance matrix �
�� .
At this point, we need the expression of the Fisher Information
Matrix (FIM) on the parameter vector � � ���� � � � � �
����	�

� �

����� Æ�� where �� � ��������������. Following [10], the FIM
expresses as follows

	� �
	

�

�

�
��

��

�

�
��

��

�
with 	�

	�
� � 	�

	
�
� � � � � 	�

	
������
�. One can easily show that

	��
	

�


��� ���
� � ����
� � �
������

���
� � ���
� � �
������

�
������
� � ��
������

� � �������

���
where


� �
�

�
�
�
� �Æ�������� �Æ�

�� �
�

�

�
�
� �Æ������� �Æ�

�� �
�

��


�
� �Æ������� �Æ�

with � �Æ� � ��� �Æ���Æ. The reason for introducing the fac-
tors ��� , ���
 , and ���� will become apparent in the next para-
graph. By applying the well known formulas for the inversion of
block partitioned matrices, we obtain :

	
��
� �

�
�� ��
��� ��

�

where

�� �
�


	�

��
��
��� � ���
��� �
��
��� � ��
��� �

�
�

�

��

�
���� �
���� �

� 	
����

� � ����
� �


�
(4)

�� � �
�


	�
��

�
���� �
���� �

�
(5)

�� �
�


	����
(6)

�� � 

��
� ��� � 
�� (7)

�� � �
�
�
�� ���

�

��
� ��


� � (8)

One can notice that � � ��where� is the �������������
Toeplitz matrix with first row ������ �� � � � � �� and first column
������ � � � � ����� �� � � � � ���. Therefore the CRB on ����� Æ�� ex-
presses as follows�

���
����	
� ���

���Æ	
�

���
�Æ��	
� ��

�Æ�Æ	
�

�
�

� ����
��� ����

���
��� ��

�
where �� � ��� �� ����. In particular, we have

�
	
���� � ��




�

�


	�

�
	��

�
�


��
� �

�

�
��
��

����
��

�
(9)

4. ASYMPTOTIC CRAMER-RAO BOUND

4.1. Asymptotic Behavior for Long Training Sequences

Hereafter, �������is assumed a stationary process with the power
spectral density ����


�� �. Hence, �������is cyclostationary, and
its cyclic spectral density �

��	
� ��
�� � at cycle � is equal to

���	
� ��
�� � �

�

�
����


��� � � (10)

Write 
Æ � ����
Æ�� ����
Æ� where ����
Æ� is the largest integer
less than or equal to 
Æ. Then one can verify that the entries of
matrix
� � ��� ��� ������������ are given by

�� ��� ��� �
�

�

�
����

��
���

�������Æ������������Æ�������

������
Æ� ���������
Æ� �����

Here, it can be shown with a mild mixing condition on ���� that

�� ��� ���
����
	

�
�

���	
� ��� � � ���

� ��

��

������������� �� �
������	

where
����
�	 stands for the almost sure convergence and �

��	
� �� �

denotes the cyclic correlation function of � at cycle �. The proof
includes a discussion on whether Æ is irrational or not. It will be
skipped here for lack of space.
It will be convenient to express ���� ��� in the frequency domain.
Denote by � � � the Fourier transform of ���� � �������. From
Parseval’s identity and using (10), we get

���� ��� �
�

�

� �

��


� � �

����

��� ��
������

�	� �

IV - 1030

➡ ➡



Finally we obtain

� �
�

�

�
�

��

�� ���������
����� �����

���� ������
���� ��� (11)

where �������� � � ��� � � � � ��������. From similar derivations,
the almost sure limits of�� and�� express respectively as

��
���

�

��
��

� �� ���������
����� �����

���� ������
���� ��� (12)

��
���

��

��
��

���� ���������
����� �����

���� ������
���� ���	(13)

Since matrices �� , �� , and �� converge as 
 � �, the
mean-square errors for the channel and the sampling clock offset
are of order ����
� and ����
�� respectively (see (9) and (6)).

4.2. Asymptotic Behavior for Long Channels

In order to obtain more compact CRB expressions, we now study
the asymptotic regime where � � �, 
 � � and ��
 � �,
and make profit of the Toeplitz nature of�,�, and�.
Because of the band-limited nature of � ���, the integration in (11–
13) can in practice be done over ���	�
 �	��, the effective band
of ����. Assuming that ��������� � does not vanish on this interval,
� is numerically singular with an effective rank close to int�����
([11, chap. 7]). Let the singular value decomposition of� be

� � ��� ���

�
�� �
� ��

�
��� ���

�

where �� is the diagonal matrix bearing on its diagonal the dom-
inant eigenvalues, i.e. those corresponding to the non-negligible
values of the integrand in (11). With a small notation abuse, we
denote by �� the ”pseudo-inverse” matrix ������ �

�
� . One can

prove here [12] that ����� � �. Therefore, as is implicitly done
in [13], the matrix��� can be replaced with�� in the CRB ex-
pressions for ����� Æ��. We therefore have




�
�
�
���� � ���

�
�

��

�
�����

�
�� ���

�

�
� �

and in a similar manner


�
����Æ� � Æ��� �

��

	�� �� ��������
	

Using some known results about asymptotic behavior of Toeplitz
matrices ([11]), it can be shown that in the asymptotic regime,




�
�
�
���� � ���

�
� ��

� ���

����

�

��������� �
��

and


�
����Æ��Æ�

�� �
����

	��
� �

��

�
�

��

�� �������� ��� �� �������������� ���

where ���� �
��

	�� �	�
�	. For lack of space, technical details

are omitted.
By inspecting these two expressions, one notices that when the

training sequence is white in the useful frequency band, the CRB
for the channel estimation is minimum. As for the clock frequency
offset CRB, due to the term �� in the integral, it is worth attribut-
ing a large amount of power to the high frequencies except if the
channel fading for these frequencies is too strong.

5. ML ESTIMATION

Let us get back to our model (3) as both the number of samples
and the filter degree are finite. The Log-Likelihood function 	���
to be minimized takes the following form :

	��� � �	� � 
��� �Æ����

The minimization of 	��� leads to the following ML based esti-
mates of Æ and � ([14],[10]) :��	
�


�Æ� � ������Æ 	
�
��� �Æ�	�

��� �
�
��� ��Æ��


�
�
��� ��Æ� �

�
��

��� ��Æ� �

�
�	�

��� � ����

where

�� �Æ� � 
��� �Æ�
�
�
�
� �Æ�
��
��� �Æ�

�
��

�
�
� �Æ�
�� 	

In order to compute the ML based sampling clock offset estimate,
an exhaustive search has to be carried out. As each try of a value of
Æ requires a matrix inversion, the implementation of this algorithm
is impractical. The estimates can however be greatly simplified in
the asymptotic regime of section 4.2. ���Æ� can be replaced with

�� �Æ� �
�




��� �Æ���

�
�
� �Æ�
�� 	

Notice that the pseudo-inversion becomes independent of Æ and
so can be done only once. Notice also that, due to the pseudo-
inversion, we are only able to estimate the projection of � on the
column space of ��, which corresponds to the in-band part of
������� �. Nevertheless as the parameter of interest is �, values of
������� � out of the band are not needed, and therefore the estimate
of � remains accurate. Here, the estimation algorithm becomes

�Æ� � ������Æ 	
�
��� �Æ�	�

��� � �
�
������ ��Æ� �


�
�	�

6. NUMERICAL ILLUSTRATIONS

Simulations are carried out in a single carrier context. The train-
ing sequence 
�
� is a QPSK constellation based pseudo-random
white sequence. The channel, provided to the authors by “Elec-
tricité de France”, is a power line channel in the band �����

	�	�����. The symbol rate is �����, the transmission filter
is a root raised cosine filter with a roll-off factor of 0.22, and
Æ � �	���� . Fig.1 shows the real and the imaginary parts of the
first 80 samples of the equivalent base-band channel, obtained with
an oversampling factor � � 	.
Fig.2 displays the CRB on Æ and � given by (6) and (9), their

asymptotic values (�4.2), and the mean square errors of the sim-
plified ML estimates (�5). Here, 
 varies from 	�� to ���� and
the Signal to Noise Ratio (SNR) is 	�dB. The asymptotic approx-
imations of �4.2 appear reliable for 
 � ����. In fig. 3, the same
quantities are displayed versus the SNR, 
 being fixed to 2000.
The variances of the sampling clock offset estimate and the chan-
nel estimate are of order����SNR�. The simplified ML estimator
is close to the asymptotic CRB for all these SNRs.
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Fig. 1. Coefficients of the channel impulse response.
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Fig. 2. Cramer-Rao bound on Æ and � vs. � .
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