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The phase noise (PHN) is one of the primary factors that 
limits the achievable performance in many communication 
systems.  Recently, the authors have proposed an effective 
"2-paths" PHN compensation scheme [1].  The approach uses 
the information provided by an additional signal path added 
to the receiver front-end to better estimate the PHN.  There 
are generally two types of PHN found in the literature: sta-
tionary PHN and Wiener PHN.  Previous results have shown 
the effectiveness of the "2-paths" scheme for stationary PHN.  
This paper addresses the applicability of the "2-paths" 
scheme for combating Wiener PHN.  It shows that simple 
modifications of the “2-paths” approach work effectively for 
Wiener PHN as well.  PHN estimation error and signal-to-
noise ratio (SNR) after PHN compensation are analyzed.  
Simulation results for a 64-QAM system demonstrate the 
significant improvement over conventional approaches in the 
presence of Wiener PHN.   

The oscillator instability due to noise, which manifests it-
self as phase noise (PHN), is one of the primary factors that 
limits the achievable performance in many communication 
systems [2][3].  This is especially true when integrated oscil-
lators are employed.  Although many high quality off-chip 
oscillators are available, it is often preferable from both a 
cost and power perspective to employ noisier on-chip oscilla-
tors.  Consequently, considerable effort has been expended in 
minimizing the performance degradation caused by PHN.  

The existing work in this area has focused on developing 
signal processing techniques to best compensate for the ef-
fects of the phase noise of a given oscillator [4][5][6].  A 
high performance adaptive PHN compensation scheme that 
uses signal processing techniques together with circuit tech-
niques has been proposed recently [1].  In [1], the receiver 
front-end is modified by adding an additional signal path that 
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helps to compensate the PHN digitally in the back-end.  This 
approach will be referred to as the “2-paths” approach.  There 
are two commonly used mathematical models of PHN: sta-
tionary PHN and Wiener PHN.  [1] has shown that the “2-
paths” approach can combat stationary PHN very effectively.   

This paper extends the “2-paths” scheme to receivers 
that suffer from Wiener PHN.  By a piece-wise approach, a 
joint prediction and smoothing Wiener filter is formed to 
optimally estimate Wiener PHN in the minimum mean-
squared error (MMSE) sense.  Although the analytical meth-
ods and results for Wiener PHN are significantly different 
from that for stationary PHN, only minor changes need to be 
made to the receiver structure in [1] to accommodate Wiener 
PHN.  In this paper, quantization effects due to analogue to 
digital converter (ADC) is also discussed.   

Fig. 1 shows a generic digital communication receiver equip-
ped with the “2-paths” PHN compensation scheme [1].  Two 
signal flow paths can be recognized, i.e., the received signal 
path (Path I) in the upper half, and the additional path (Path 
II, in the dotted block) added to enhance the LO PHN estima-
tion.   

The complex received passband signal is ( ) oj tr t e ω , where 
oω  is the carrier frequency, and 

1( ) ( ) ( )k
k

r t a g t kT w t= − +  (1) 

is the baseband signal.  In (1), ak is the complex data symbol, 
g(t) is the convolution of the transmitter pulse with the chan-
nel response, and 1( )w t  is the baseband complex white Gaus-
sian noise. The channel is assumed here to be an additive 
white Gaussian noise (AWGN) channel. 

Let [ ( )]oj t te ω θ− −  be the noisy local oscillator (LO) output 
in baseband complex form, where ( )tθ is a time-varying 
phase.  When the LO output is phase-locked, ( )tθ is modeled 
as a stationary process and called stationary PHN.  When the 
LO is only frequency-locked, sometimes also called free-
running oscillator, the time-varying phase ( )tθ  is modeled as 
a Wiener process [2][7], which is the integration of a white 
Gaussian random process.  ( )tθ is defined as the PHN in 
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Wiener PHN model.  Although PHN ( )tθ  is nonstationary, 
the LO output ( )j te θ  is asymptotically stationary with a Lor-
entzian power spectrum [7].  For Wiener PHN ( )tθ ,

[ ( )] 0E tθ = 1 2 1 2[ ( ) ( )] 4 min( , ),E t t t tθ θ πβ=  (2) 
where β  is the one-sided 3 dB bandwidth (unit Hz) of the 
Lorentzian power spectrum.  Discrete-time Wiener PHN can 
be expressed as [ 1]nθ + = [ ] [ ]n w nθθ +  where [ ]w nθ  is zero-

mean white Gaussian noise with variance 2
θσ .  Letting T be 

the sampling period, 2
θσ and β  can be related by 2 4 Tθσ πβ= .

In Path I, the mixture of the received passband signal with 
the LO output is followed by an ideal low pass filter F(ω) to 
produce the baseband signal modulated by the PHN.  The 
delay block δ(t-t1) models the delay associated with the ana-
log part of Path I.  After sampling at rate 1/Ts, the baseband 
signal in Path I is: 

1( )
1 1[ ] ( ) sj mT t

sr m r mT t e θ −= − . (3) 
r1[m] is then fed into a digital pulse matched filter (MF), 
whose impulse response is gMF(t)=g(-t).  Assuming that sym-
bol timing is achieved [8], the MF output is decimated to the 
symbol rate T.  The resulting signal is 

1 1[ ] [ ] ( )MF s
m

z n r m g nT mT t= − + . (4) 

Index n is subsequently used to represent the symbol-rate 
discrete-time index at the MF output, and index m is used to 
denote the sampling-rate discrete-time index before the MF.  
The delay block after decimation in Path I is added because 
the PHN estimation filter in Path II runs as a smoothing filter.   

In Path II, The oscillator output is downconverted to the 
baseband by mixing itself with a delayed and conjugated 
replica.  The mixer output is 

2 2[ ( ) ( ) ]
2 ( ) oj t t t tr t e θ θ ω− − += , (5) 

where t2 is the delay added by the delay element as shown in 
Fig. 1, and the constant ωot2 is denoted by γ. r2(t) is sampled 
at the symbol rate 1/T, although lower sampling rates can be 
employed: 

2[ ( ) ( ) ]
2 2 2[ ] ( ) [ ]j nT nT tr n r nT e w nθ θ γ− − += = + , (6) 

where 2[ ]w n  is the additive white quantization noise with 

uniform distribution, zero-mean and variance 2
2wσ . [ ]nϕ , the 

phase of 2 [ ]r n , is applied to a smoothing filter, the output of 

which is combined with the PHN estimate from Path I to 
improve the phase estimate.   

PHN is compensated by multiplying z[n] with | 1n̂ nje θ −− ,
where | 1n̂ nθ −  is the PHN estimate to be elaborated in Section 
3.  The compensated signal  

| 1
ˆ

[ ] [ ] n njy n z n e θ −−=  (7) 
is then used for phase error estimation and data detection.   

Due to the narrow bandwidth of the LO output ( )j te θ , the 
PHN changes slowly compared to the data signal and noise, 
allowing the PHN term to be moved outside the convolution 
operation with little loss in accuracy.  For normalized root 
raised cosine pulse shaping, the MF output z[n] can be shown 
to be approximately  

[ ][ ] [ ]j n
n gz n a e w nθ= + , (8) 

where 1( )
1 1 1[ ] ( ) ( )sj mT t

g s MF s
m

w n e w mT t g nT mT tθ −≡ − − +  is 

the output of the MF, approximately zero-mean white Gaus-
sian with variance 2

1wσ , and 

1 1

1 1

[ ] ( ( ) / )

( ) ( )
s s

n s o s

n nT t T T t

m T t m T nT t

θ θ

θ θ

+ −

− = + −
 (9) 

is the PHN of the nth symbol to be estimated.  In (9), x de-
notes the largest integer less than or equal to x.

Fig. 2 illustrates the PHN estimation block in Fig. 1.  In 
Path I, decision-directed one-step PHN prediction is em-
ployed, where past data decisions are available and correct to 
estimate PHN ][kθ : n na a=  for n<k [8].  [ ]/ nz n a gives the 

maximum-likelihood estimate of the phasor ][nje θ , and its 
phase can be approximated to 

|
ˆ arg( [ ]/ ) [ ] Im[ ](1 Re[ ])n n n n nz n a nθ θ ξ ξ= ≈ + − , (10) 

where [ ][ ] /j n
n g nw n e aθξ −=  and | | 1nξ .  Herein, the sub-

script “n|n” is used for an estimate of time n using decisions 
up to symbol n, and similarly, “n|n-1” for a prediction of time 
n using decisions up to symbol n-1.  Equivalently, | 1n̂ nθ − can 

be obtained by |n̂ nθ = ˆ [ ]e nθ | 1n̂ nθ −+ , as shown in Fig. 2, where 

MF
r1[m]

δ(t-t1)

arg(⋅)
r2[n]

r2(t)

F (ω)

( ⋅ )* δ(t-t2)

-j[ - ( )]e ot tω θ

2 Re{ ( ) }oj tr t e ω

LO 

detector

e-j( ⋅ )

| 1n̂ nθ −

y[n]

Fig. 1. Receiver model.
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ˆ [ ] arg( [ ]/ )e nn y n aθ =  is the output of the phase detector that 

estimates the estimation error | 1
ˆ[ ] [ ]e n nn nθ θ θ −= − .

To predict the desired phase [ ]kθ , 1N  prior values of 

|k̂ i k iθ − −  ( 11 i N≤ ≤ ) are used.  Although |k̂ i k iθ − −  is nonstation-
ary and its variance increases as k increases, its centralized 

value | |
1

1ˆ ˆ
N

k i k i k l k l
lN

θ θ− − − −
=

−  has the same statistical properties 

for any k.  The centralized values represented in vector form 
is

1 11 1| 1 2| 2 | 1
ˆ ˆ ˆ[ , ,..., ] [ ]T
k k k k k N k N o kθ θ θ θ− − − − − −= − , (11) 

where 1  is a vector of length 1N  with all elements being 

‘1,’ and |
1

1 ˆ[ ] .
N

o k l k l
l

k
N

θ θ − −
=

=  Therefore, the linear minimum 

mean-squared error (MMSE) estimate of [ ]kθ  can be found 
by 

1
| 1 1 1 1

ˆ [ ]T
k k o kθ θ−

− = + , (12) 

where 1 is the autocorrelation matrix of 1 , 1 is the auto-
correlation vector between 1 and [ ] [ ]ok kθ θ− :  To calculate 

1 and 1 , ( )tθ  around [ ]kθ  can be expressed as 
( ) [ ] ( )t k M tθ θ φ= − + , (13) 

where M N> and ( )tφ  is zero-mean Gaussian with vari-
ance 2

( ) 14 ( ( ) )t o st m T k M T tφσ πβ= − − − + . The (i,j)th element 

of 1  and the ith element of 1  can be shown to be: 
2 2 2

1
2

1
2

( , ) [( 1)(2 1) /(6 ) ( ) /(2 )

1 1max( , )] [ ( ) ] [ ]
2 | |
w

n

i j N N N i i j j N

i j i j E
N a

θσ

σδ

= + + + + + +

− + − −
 (14) 

2 2
1 ( ) [( 1)(2 1) /(6 ) ( ) /(2 ) ]i N N N i i N iθσ= + + + − − . (15) 

It is clear from (14) and (15) that 1 and 1 depend on nei-

ther k nor M.  To avoid an ill-conditioned 1 , N should be 
slightly larger than N1.  The variance of the estimation error 

[ ]e kθ  is given by 

2 2 2 2 1
1 1 1 1 12

( 1)(2 1) 1 1[ ]
6 2 | |

T
e w

n

N N
E k E

N N aθσ θ σ σ −+ += = + − . (16) 

It is noted that the Kalman filter can also be used to estimate 
Wiener PHN.  However, since 1 and 1 are time-invariant, 

the performance of the above Wiener solution can be shown 
to be comparable to that of a Kalman filter.  This paper there-
fore focuses on the use of the Wiener filter to estimate the 
Wiener PHN.   

In Path II, signal can be viewed as being modulated with 
a data sequence that is a constant ‘1,’ and can be used in a 
data-aided smoothing manner [8].  Similar to (10), defining 

nς = ( )2( ) ( )
2[ ]

j nT nT t
w n e

θ θ γ− − − +
 and assuming 2[ ] 1w n << , it can 

be shown that: 
2

2

[ ] arg( [ ])

( ) ( ) Im[ ](1 Re[ ]).n n

n r n

nT nT t

ϕ

γ θ θ ς ς

=

≈ + − − + −
 (17) 

Unlike |n̂ nθ  in (10), [ ]nϕ  is stationary.  Centralized 2N  past 
values and 3N  future values of ][nϕ  form the observation in 
Path II, represented in vector form: 

2 3 2 2[ [ ],..., [ ],..., [ ]]Tk N k k Nϕ ϕ ϕ γ= + − − , (18) 
where 2  is a vector of the same length as 2  and all ele-
ments being ‘1,’ and γ  is given by its moving average esti-
mate, the moving average in Path II can be set much longer 
than Path I, as [ ]nϕ  is stationary.  The joint estimate of [ ]kθ
based on observations 1 2[ ]T T T= from both Path I and 
Path II is given by: 

1
| 1 1 1 2 2

ˆ [ ] [ ].T T T
k k o opt opt ok kθ θ θ−

− = + + +  (19) 
In (19),  is the correlation matrix of , is the correlation 
vector between  and [ ] [ ]ok kθ θ− . The filter opt  is divided 

into two subfilters, 1opt and 2opt , corresponding to Path I 
and Path II respectively, as shown in Fig. 2.  Similar to (14) 
and (15), the elements of and  can be shown to be in-
variant to k and M.  The error variance of the PHN estimate 
using both paths is 

2 2 2 1
1 2

( 1)(2 1) 1 1
6 2 | |

T
w

n

N N
E

N N aφσ σ σ −+ += + − . (20) 

The SNR of [ ]y n , i.e., SNR after the PHN compensation, 
is approximately  

2 2 2 2
1 1

1 1
[| | ] 1/w n in

SNR
E a SNRσ σ σ

= =
+ +

, (21) 

where 2
1wσ  is the variance of [ ]gw n  in (8) and 1inSNR =

2 2
1[| | ]n wE a σ  is the input  SNR before the received signal is 

corrupted by the PHN.  The SNR after the PHN estimation 
using Path I only is similarly obtained by replacing 2σ  with 

2
1σ  in (16).   

To illustrate the benefits of Path II, numerical perform-
ance results for a 64-QAM system in the presence of Wiener 
PHN are presented in Fig. 3(a)-3(d).  The symbol period T is 
assumed to be 10-6s and the sampling period Ts=T/2.  SNRin1

in Path I is 29 dB.  The SNR in Path II, which is defined 
as 2

2 21in wSNR σ= , 2
2wσ  being the variance of 2[ ]w n  in (8), is 

37.88 dB (6 bits ADC in Path II).  There are N1=8 filter taps 
in Path I, and 11 taps in Path II, of which N2=8 taps corre-

w2 w1
ϕ[n]

z-1

| 1n̂ nθ −

Figure 2. PHN estimation block. 

|n̂ nθ

Path II 

ê [n]θ

MA +

MA 
−
+

Path I 

+
+

−
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spond to ‘past’ and N3=2 taps in Path II to the ‘future’.  The 
number of averaging in Path I is set to N=N1+2.  The delays 
are t1=0.25T and t2=1.25T.  Fig. 3(a) and 3(b) depict the stan-
dard deviation of the estimation error and the associated SNR 
after compensation vs. 2

θσ , from which significant improve-
ment can be observed.  To reduce the hardware complexity of 
Path II, the ADC bits in Path II should be as small as possible 
while being large enough to maintain a reasonable 2

2wσ .  Fig. 
3(c) and 3(d) plot the results for different number of ADC 
bits in Path II, suggesting a Path II ADC of 5 or 6 bits. 

For the phase noise compensation scheme to be practical, 
the phase noise must be estimated and corrected adaptively, 
since the statistical properties of the oscillator might be un-
known or time-varying.  To adaptively tune the weights of 
the PHN estimation filters, least-mean-square (LMS) and 
recursive-least-square (RLS) filter can be designed [9].  Fig. 
3(e) and 3(f) show the simulation results of QAM signal 
constellations after PHN compensation for a Wiener PHN of 

θσ =30, where RLS is employed for both conventional and 
the “2-paths” approaches. 

This paper analyzes the performance of the “2-paths” PHN com-
pensation scheme in the presence of Wiener PHN.  Although 

non-stationary, Wiener PHN can still be estimated from an 
MMSE filter by a piece-wise approach.  Both analytical and 
simulation results suggest significant improvement in compen-
sating Wiener PHN by employing an additional signal path.   
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 (a) (c) (e) 

 (b) (d) (f) 

Figure 3.  (a) (b):  Standard deviation of PHN estimation error (a)  and  SNR after PHN compensation (b)  v.s.  standard devia-
tion of PHN.  (c)(d): Standard deviation of PHN estimation error (c)  and  SNR after PHN compensation (d)   v.s.  number of 

ADC bits in Path II.  (e)(f): Constellation of 64 QAM after PHN compensation using 1-path (e) and 2-paths (f). 
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