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ABSTRACT
We study bit-error rate (BER) performance of single-
carrier (SC) zero-padded (ZP) transmissions with zero-
forcing (ZF) equalization. Padded redundant zeros mitigate
multipath effects but reduce the bandwidth efficiency. We
show analytically that the BER improves as the bandwidth
efficiency decreases, i.e., there is a clear trade-off between
BER and bandwidth efficiency. We also demonstrate that
ZP outperforms SC cyclic prefixed (CP) transmission.

I. INTRODUCTION

Severe multipath channels often arise in high-rate digital
transmissions, which necessitates sophisticated equaliza-
tion at the receiver. Maximum Likelihood (ML) equaliza-
tion collects the available multipath diversity to improve
bit-error rate (BER) performance, but is computationally
cumbersome. On the other hand, linear equalization ex-
hibits poor performance due to intersymbol interference
(ISI) resulted from the multipath. Using cyclic prefix (CP)
and IFFT/FFT, OFDM (orthogonal frequency division mul-
tiplexing) renders a convolution channel into parallel flat
channels. A lot of success of multi-carrier transmissions
based on OFDM can be found. But OFDM has several
drawbacks including loss of multipath diversity gain, high
peak-to-average power ratio and high sensitivity to fre-
quency offset [5]. To overcome these disadvantages, single-
carrier (SC) block transmissions have gained increasing
interests recently.

In SC-CP transmissions, the CP inserted block is
parallel-to-serial converted and is transmitted. Although
there is no IFFT operation at the transmitter, efficient
frequency domain equalization is available at the receiver
[1]. With zero-forcing (ZF) equalization, SC-CP has bet-
ter performance than uncoded OFDM at high SNR [4].
Another SC block transmission is zero-padded (ZP) trans-
mission [9], where it inserts redundant zeros instead of CP
into each transmitted block. Sufficient guard zeros separate
two consecutive received blocks and remove interblock
interference (IBI). It also leads to efficient ZF equalization
with guaranteed symbol detectability regardless of the
zero locations of the underlying finite impulse response
(FIR) channel [7]. Guaranteed symbol detectability im-

plies multipath diversity, and thus improved performance
at moderate-high SNR [10], [11]. Indeed, ZP with ZF
equalization exhibits multipath diversity at high SNR [8].

To take advantage of multipath diversity in ZP, the
number of redundant symbols should be longer than the
underlying channel order. In order to avoid bandwidth
efficiency loss, this calls for long block sizes. But, as
the block size gets long, ZP transmissions converge to
conventional SC transmissions. Intuitively, the benefits of
ZP would be lost for long blocks. In this paper, we analyze
the relation between BER performance and bandwidth
efficiency of ZP transmissions.

This paper deals with ZP transmissions with ZF equal-
ization. We first show that for every fixed channel, its
performance degrades as its block size increases. There is
a clear trade-off between BER and bandwidth efficiency.
This implies that at low SNR, ZP with long block size
cannot take advantage of multipath diversity. But it also
means that ZP outperforms conventional SC transmissions
with ZF equalization, which still justifies the use of zero
insertions. Numerical simulations are provided to validate
our theoretical findings as well as to compare ZP with SC-
CP and uncoded OFDM.

II. ZP TRANSMISSIONS

We consider point-to-point wireless transmissions over
time-flat but frequency-selective fading channels. At the
transmitter, the information-bearing sequence {s(n)} is
grouped into blocks s(n) = [s(Mn), . . . , s(Mn + M)]T

of size M . To mitigate the effects of frequency selective
channels, we pad M0 zeros at the end of each block to
obtain zero-padded (ZP) transmitted blocks {u(n)} of size
N := M + M0.

Our discrete-time baseband equivalent FIR channel
{h(l)} has order L, and is considered linear time-invariant.
At the receiver, we assume perfect timing and carrier
synchronization. We collect N noisy samples in an N × 1
received vector x(n). If the number M0 of redundant
zeros is greater than or equal to the channel order L, i.e.,
M0 ≥ L, IBI is removed, and we obtain,

x(n) = HMs(n) + v(n), (1)
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where HM is a tall N×M (truncated) Toeplitz matrix with
first column [h(0), h(1), . . . , h(L),0T ]T [9], and v(n) is
additive white Gaussian noise (AWGN) with variance σ2

vI .
Although redundant zeros reduce the bandwidth effi-

ciency to M/(M + M0), if M0 ≥ L, several benefits
are revealed: i) low-complexity block-by-block processing
with linear ZF or minimum mean-squared error (MMSE)
equalization at the receiver [9]; ii) ML equalization [10],
[11] or even with ZF equalization at high SNR [8], full
multipath diversity gain is enabled to enhance system
performance (maximum diversity advantage); iii) blind
identification of the unknown channel becomes possible
[7].

With ML equalization, conventional SC transmissions
without zero insertions also exhibits maximum diversity
[2]. Since the bandwidth efficiency of ZP is reduced
by redundant zeros, ZP with ML equalization is inferior
to conventional SC transmissions in terms of bandwidth
efficiency. ZP with ZF equalization also has maximum
diversity at high SNR [8]. But the relation of its BER
performance and bandwidth efficiency is still unclear.
We will show analytically the dependency of the BER
performance of ZP on its bandwidth efficiency.

III. PERFORMANCE OF ZF EQUALIZERS

We consider ZP transmissions with ZF equalization (ZF-
ZP). Since at high SNR, the performance of the ZF equal-
ization converges to that of MMSE equalization, our results
below approximately hold true for MMSE equalization at
high SNR.

We assume that the perfect knowledge of the channel is
available at the receiver. Then, the output of a ZF equalizer
can be expressed as

ŝ(n) = s(n) + H†
Mv(n), (2)

where H†
M is the pseudo-inverse of HM defined as

H†
M = (HH

MHM )−1HH
M with (·)H denoting complex

conjugate transposition.
Since v(n) is white Gaussian with variance σ2

vI, the
covariance of the effective noise H †

Mv(n) is found to be
σ2

v(HH
MHM )−1. Since HM is tall and has full column

rank except for null channels, (HH
MHM )−1 always exists.

Suppose that we draw information symbols from a
BPSK or a QPSK constellation and that we employ
symbol-by-symbol detection based on the ZF equalized
output. Let us define an M × M matrix RM as

RM := HH
MHM . (3)

We denote the mth diagonal entry of R−1
M as

λ(M)
m := [R−1

M ]mm, for m = 1, . . . , M, (4)

where [·]ij stands for the (i, j)th entry of a matrix.

The probability of the bit-error for the mth symbol
of s(n) is given by Q([λ(M)

m ]−1/2σs/σv) [6], where σ2
s

is the variance of s(n) and Q(·) is the complementary
error function such that Q(x) = 1/

√
2π

∫ ∞
x e−t2/2dt. We

average the BER over one transmitted block to obtain

BERM :=
1
M

M∑
m=1

Q([λ(M)
m ]−

1
2
σs

σv
). (5)

For our analysis, we utilize the following property of
{λ(M)

m } (See Appendix for a proof):
Lemma 1: Let λ

(M)
m be the mth diagonal entry of the

inverse of the M × M matrix defined as (3). Then,

λ
(M+1)
1 > λ

(M)
1 (6)

λ
(M+1)
m+1 ≥ max[λ(M)

m , λ
(M)
m+1] for m = 1, . . .M. (7)

Since RM is a symmetric Toeplitz matrix, it follows
from [R−1

M ]mm = [adj RM ]mm/|RM | that

λ(M)
m = λ

(M)
M−m+1,M−m+1, (8)

for m = 1, . . . , M , where adj RM and |RM | denote the
adjoint and the determinant of RM . The following lemma
follows from the properties of {λ(k)

m }:
Lemma 2: Let f(x) is a monotonically increasing func-

tion in x. Then, for {λ(k)
m } satisfying (6), (7), and (8), it

holds that

1
M + 1

M+1∑
m=1

f(λ(M+1)
m ) >

1
M

M∑
m=1

f(λ(M)
m ). (9)

The complementary error function Q(x) is a monotoni-
cally decreasing function in x. Thus, Q([λ(M)

m ]−1/2σs/σv)
is a monotonically increasing function in λ

(M)
m . From

Lemma 2, we can state our main result for BPSK and
QPSK signaling:

Theorem 1: Suppose ZP transmissions with ZF equal-
ization. Let the number of padded zeros be M0 ≥ L, where
L is the channel order. Then, for every channel realization,
the BER of ZP transmissions is a decreasing function in
bandwidth efficiency, that is,

BER1 < BER2 < · · · < BER∞ (10)

where BERM is the BER of a ZP transmission of informa-
tion block size M .

This theorem states a deterministic property of the
BER performance of ZF-ZP. The performance depends
on the block size and degrades as the block size of the
information-bearing symbols increases. There exists a clear
trade-off between BER performance and bandwidth effi-
ciency. One has to carefully design the block size to obtain
the target BER. Theorem 1 also suggests a simple adaptive
transmission scheme similar to the adaptive rate control of
error correcting codes: if the target BER performance is not
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Fig. 1. BER comparison for a fixed channel

attained with a block size, the receiver asks the transmitter
to reduce the block size to obtain a better BER.

The limit of BERs is BER1, which is realized
with M = 1. In this case, the BER can be ex-
pressed as Q((

∑M
l=0 |h(l)|2) 1

2 σs/σv). which is identi-
cal with the BER at high SNR of ML equalization
with and without zero padding [2], [10], [11]. On the
other hand, as M goes to ∞, BERM converges to
Q([

∫ 1

0 |H(ej2πf )|−2df ]−1/2σs/σv). This is found to be
equal to the BER of conventional SC transmissions with
ZF equalization having (ideal) infinite length coefficients.
We can conclude that ZP always outperforms conventional
SC transmissions if both employ ZF equalization.

Since Theorem 1 holds true for every channel realization
with order lesser than L + 1, averaging over the channel
probability density function, we establish the following:

Theorem 2: Consider ZP transmissions with ZF equal-
ization as in Theorem 1. Then, the BER of ZP transmissions
averaged over random channels is a decreasing function
in bandwidth efficiency such that

BER1 < BER2 < · · · < BER∞ (11)

where BERM denotes the average BER of a ZP transmis-
sion of information block size M .

Suppose, for an example, i.i.d. Rayleigh channels. The
average BER of ML equalization is approximated at high
by (Gσs/σv)−(L+1) with G a constant. The constant G
can be viewed as a coding gain if the linear channel
convolution is considered as coding over complex field
[10], [11]. The slope of the BER-SNR curve, L + 1, is
the diversify order, which is resulted from i.i.d. Rayleigh
channels. Although ZF-ZP has the diversity gain at high
SNR [8], Theorem 2 states that ZF-ZP loses the coding
gain as the bandwidth efficiency increases so that its
diversity advantage could not be found at low SNR.
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Fig. 2. BER comparison for Rayleigh channels of order 7

Unfortunately, it is not easy to obtain an explicit expres-
sion of the average BER even for i.i.d. Rayleigh channels,
because the joint distribution of {λ(M)

i } is not available.
We will resort to simulations to compare the performance
of SC transmissions in the next section.

IV. NUMERICAL EXAMPLES

To validate our theoretical findings, we test ZF-ZP with
different information block sizes, M = 16, 32, 64, for a
fixed channel and for random channels. Performance of
uncoded OFDM with 64 subcarriers and SC-CP transmis-
sions [4] with blocks of sizes 32 and 64 are evaluated
when hard-decoding was used at their corresponding ZF
equalizer outputs.

The fixed channel is of order 3, whose coefficients
are [0.5957 + 0.0101i,−0.3273 − 0.3472i,−0.2910 −
0.0533i, 0.1285−0.5599i]. BER performance of our tested
systems are illustrated in Figure 1. Note that the BER
performance of ML is identical with the BER of the ZF-ZP
with M = 1. It is clear from the figure that the performance
of ZF-ZP degrades as its information block size increases,
which is analytically shown by Theorem 1. SC-SP does
not have such a property and is inferior to ZF-ZP. It is
also observed that at moderate-high SNR, ZF-ZP has better
performance than the uncoded OFDM.

To verify Theorem 2, we generated 103 Rayleigh
distributed channels of order L = 7, having complex
zero-mean Gaussian taps with exponential power profile:
E{|h(l)|2} = exp(−l)/[

∑
l exp(−l)], and averaged the

results. We depict BER performance in Figure 2. As stated
by Theorem 2, ZF-ZP exhibits a trade-off between band-
width efficiency and BER performance. ZF-ZP enjoys the
multipath diversity gain so that at high SNR, it outperforms
uncoded OFDM, while SC-SP has the worst performance.
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APPENDIX

Proof of Lemma 1: We first note that RM has the identical
structure of the correlation matrix of a moving-average
process of coefficients {h(0), . . . , h(L)} driven by a white
noise. To prove the lemma, we borrow the results on linear
prediction of stationary processes. Let us consider Yule-
Walker equations [3, Section 3]:

RM+1

[
1

−aM

]
=

[
PM

0

]
, (12)

where aM is the predictor vector of size M and PM is the
(forward) prediction error power.

The prediction error power of prediction order M can be
expressed as PM = PM−1(1 − |κM |2) = P0

∏M
m=1(1 −

|κm|2), where κm is the reflection coefficient such that
|κm| ≤ 1. Since λ

(M+1)
1 is the first diagonal entry of the

inverse matrix of RM+1, it follows from (12) that PM =
1/λ

(M+1)
1 . On the other hand, the linear prediction error

for moving average processes decreases as M increases,
but κm �= 1 for all m. Thus, (6) follows from PM < PM−1

and PM = 1/λ
(M+1)
1 .

To prove (7), we partition RM+1 as

RM+1 =
[

RM rB
M

rBH
M r

]
=

[
r rH

M

rM RM

]
, (13)

where rB
M and rM are M × 1 vectors and r =

∑
l |h(l)|2.

Applying the matrix inversion lemma to (13), since the
forward prediction variance is identical with the backward
prediction variance, we obtain

R−1
M+1 =

[
R−1

M 0
0T 0

]
+

1
PM

[ −bM

1

] [ −bM

1

]H
(14)

=
[

0 0T

0 R−1
M

]
+

1
PM

[
1

−aM

] [
1

−aM

]H
(15)

where bM = −R−1
M rB

M and aM = −R−1
M rM . Comparing

diagonal entries of both sides of (14) and (15), we reach
to (7).
Proof of Lemma 2: We prove the lemma only for M odd.
For M even, it can be proved similarly.

Since f(x) is a monotonically increasing function in x,
we have from (6) and (7) that f(λ(M+1)

1 ) > f(λ(M)
1 ) and

f(λ(M+1)
m+1 ) ≥ max[f(λ(M)

m ), f(λ(M)
m+1)] for m = 1, . . .M .

Let M = 2K + 1. Noting (8), we have

1
M + 1

M+1∑
m=1

f(λ(M+1)
m ) (16)

>
2

M + 1

[
f(λ(M)

1 ) +
K∑

m=1

max[f(λ(M)
m ), f(λ(M)

m+1)]

]
.

On the other hand, the RHS of (9) can be expressed as

1
M

M∑
m=1

f(λ(M)
m ) =

2
M

[
K∑

m=1

f(λ(M)
m ) +

f(λ(M)
K+1)
2

]
.

The difference of the two BERs is lower-bounded by

1
M + 1

M+1∑
m=1

f(λ(M+1)
m ) − 1

M

M∑
m=1

f(λ(M)
m )

>
2

M(M + 1)

K∑
m=1

{
M max[f(λ(M)

m ), f(λ(M)
m+1)]−[

mf(λ(M)
m ) + (M − m)f(λ(M)

m+1)
]}

. (17)

Since f(x) is a monotonically increasing function in x, the
following inequality holds true:

max[f(λ(M)
m ), f(λ(M)

m+1)]

>
m

M
f(λ(M)

m ) +
M − m

M
f(λ(M)

m+1),

for m = 1, . . . , K . This shows that the RHS of (17) is
greater than 0, which leads to (9).
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