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ABSTRACT

We consider the problem of designing a robust linear 
equalizer under channel uncertainties. Specifically, we propose 
a robust peak distortion (RPD) equalizer, in which we minimize 
the error probability of the worst-case sequence and the worst-
case channel, in the uncertainty region. We show that the RPD 
equalizer can be found efficiently using standard convex 
optimization packages. We then demonstrate through 
simulations that under channel uncertainty the RPD equalizer 
outperforms traditional equalizers, and previously proposed 
robust equalizers.  

1. INTRODUCTION   

Channel equalization methods are used to combat the effects 
of inter-symbol interference (ISI) that results from the frequency 
and time selectivity characteristics of the transmission channel. 
The optimal equalization method, which minimizes the bit error 
rate (BER), has exponential computational complexity. 
Therefore, various sub-optimal approaches are used in practice, 
including linear equalization (LE) [1,2], and nonlinear decision 
feedback equalization (DFE) [3]. The most common methods 
for designing linear equalizers are based on the zero forcing 
(ZF) and the minimum mean squared error (MMSE) criteria, 
which lead to a closed form solution. However, the ZF and 
MMSE criteria do not aim to minimize the error probability 
directly. An alternative design method is the peak distortion 
(PD) criterion [1,4], which aims to minimize the error 
probability of the worst-case transmitted sequence. As is shown 
in [4], in the case that the error probability is sufficiently low, 
the PD equalizer minimizes the error probability. 

Each of the methods described above assumes that the 
transmission channel is perfectly known. However, in most 
practical cases, the transmission channel is known with limited 
accuracy, for example, in the case that the channel is estimated 
with errors, in the case that the channel is time varying or in the 
case that the channel coefficients have some precision 
limitation. In these cases the standard LE and DFE equalizers 
employing the PD, MMSE and ZF criteria may not achieve the 
designated optimality. 

 To account for the channel uncertainty, it is desirable to 
design equalizers that have good performance across all 
possible channels in the region of uncertainty. In [5], robust LE 

and DFE were proposed, based on the MMSE and ZF criteria. 
Note, however, that these methods do not optimize the error 
probability. In this paper we propose a new robust LE, which is 
based on the PD criterion. For sufficiently low error probability, 
this equalizer minimizes the worst-case error probability across 
all possible channels in the region of uncertainty and all 
possible symbol sequences. The proposed equalizer, which is 
based on the potent framework of convex optimization theory 
[6,7], is shown through simulations to outperform traditional 
equalizers, and previously proposed robust equalizers.   

The paper is organized as follows. In Section 2, we 
formulate our problem and review the basics of linear 
equalization. The peak distortion equalizer is reviewed in 
Section 3. In Section 4 we develop the robust peak distortion 
equalizer. In Section 5 we demonstrate its advantages over 
traditional methods.  

2. LINEAR EQUALIZATION 

Consider a communication system with additive white 
Gaussian noise (AWGN). The discrete-time model for the 
received, equivalent low-pass [2], signal is given by: 
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where ia  is the transmitted symbol at time index i, ih are the 
impulse response coefficients of the propagation channel, nw is 
a zero-mean AWGN process with variance 2

σ , and nz  is the 
channel's output at time index n. For simplicity we assume that 
all symbols are equally likely and that { }1,1ia −∈ . Furthermore, 
we assume that ih and nw are real-valued. The extension to 
higher-dimensional signal constellations and complex valued 
noise and channel coefficients is straightforward. 

The LE aims to compensate for the channel and noise using 
a linear finite impulse response (FIR) filter. The output of the 
length-(2L+1) equalizer is given by: 
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where  
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and H is a ) (( )1212 +×++ LKL  Toeplitz convolution matrix: 
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The n-th symbol is detected as ( )nn ââ sign= .
For completeness we provide the MMSE and ZF equalizers. 

The MMSE equalizer is defined as: 

( ){ }.minarg
2

, nnwaMMSE ay −Ε=
g

���� ,                 (6) 

and is given by: 
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where D���� denotes a column zeros vector with a one in the D-th 
location. The ZF equalizer is defined as: 

{ }.minarg
2

D��������������������
g

=ZF ,                           (8) 

where 2
⋅ denotes  the standard Euclidean norm. The solution 

to the ZF optimization (8), is given by: 
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Assuming that the ISI power is less than the power of the 
current symbol, i.e., the eye diagram is open: 

10T
=∀≥ Da�������������������� ,  (10) 

where D accounts for the delay of the cascade of the channel h
and the equalizer ���� , the  BER of a LE is given by [2]: 
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where 
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and the Q-function is defined as: 
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Unfortunately, the function ( )����εP  is highly nonlinear and 
difficult to optimize. Hence, sub-optimal criteria are used 
instead. The most commonly used sub-optimal criteria are the 
ZF and MMSE criteria. Those criteria, however, do not attempt 
to minimize the error probability directly. A criterion, which 
minimizes the worst-case sequence error probability, is the PD, 
which we now discuss. 

3. PEAK DISTORION EQUALIZATION 

 In this section we formulate the standard PD equalizer in a 
way that will provide further insight into our robust 
equalization method. Under the assumption that the error 
probability is sufficiently low, the sum of exponents, in the 
expectation for the error probability, can be approximated by 
the largest exponent so that (11) becomes: 
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where the maximum is over all possible symbols sequences. 
When the error probability is sufficiently low, the optimum 
equalizer will minimize the error probability (14). Under the 
assumption that the eye diagram is open, the equalizer that 
minimize (14) can be formulated as: 
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Each Q-function in (15) is monotonically decreasing with 
respect to the SINR, thus maximizing the Q-function in (15), is 
equivalent to minimizing the SINR, hence: 
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The PDg  (16) will minimize the worst-case SINR for every 
possible transmitted sequence. This is the precise definition of 
the PD equalizer. The optimal solution to (16) is unique up to a 
positive constant factor. Therefore, we can set: 

( ) 1min =������������T

a
,                            (17) 

which can be formulated equivalently as the linear constraint: 

11 =∀≥ DaT
�������������������� .                    (18) 

Substituting (18) into (16) yields: 

( ) 11minarg T.., =≥ ∀= D
gPD atsT

����������������������������g .        (19) 

The problem (19) is a quadratic program (QP), with KL+22
linear constraints, which minimizes the worst-case sequence 
error probability, given the precise channel convolution matrix 
(5), and thus the PD equalizer minimizes the BER when the 
probability is sufficiently low and the eye diagram is open at the 
equalizer output. This QP is equivalent to the noise limited PD 
optimization problem presented in [4]. In the following we will 
develop a robust PD equalizer based on (19).  

4. ROBUST EQUALIZATION 

In this section we formulate a robust version of the PD 
equalizer, by explicitly incorporating channel uncertainties into 
the optimization problem (19). In many cases the channel may 
not be known precisely, but the i-th tap may be given by: 
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Figure 1: Worst-case SINR performance for different robust designs. 

iii hh ∆+ ε                                  (20) 

where ih  represents the nominal channel coefficients, ih∆  are 
the absolute maximum distortions on every channel coefficient 
and iε is the i-th element of the vector ε , which is unknown 
and bounded by 1≤ε . In practical cases the bounds ih∆  will 
be derived from the specifics of the equalization problem at 
hand, for example: a time varying channel with a known bound 
on the varying rate or channel impulse response coefficients 
described with limited precision. Another example is the case 
in which the channel impulse response is estimated based on 
training sequences. In this case, the channel estimation error 
can be modeled, as in [9], and the ih∆ , can be chosen to be 
proportional to the standard deviation of the estimator. Defining 
a distortion matrix for every channel coefficient: 
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we can rewrite (20) in matrix form, as: 

KK000 ∆H∆HHH εε +++= L  ,                      (22) 

so that, H belongs to the set

{ }1,εε ≤+++==
∆

ε∆H∆HHHHS KK000 L .               (23)  

In view of the above channel uncertainty model, the standard 
MMSE (7), ZF (9) and the PD equalizers (19) may not achieve 
the designated optimality. In order to account for the given 
channel uncertainty, we define the robust PD (RPD) equalizer 
as a solution to the problem of minimizing the PD criterion (19) 
for any S∈���� . Hence, the RPD criterion can be stated as: 
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The above RPD equalizer is designed to minimize the 
worst-case SINR over every possible transmitted sequence and 
over any S∈���� , and thus, for sufficiently low error probability, 
the RPD equalizer will minimize the BER for S∈���� . Defining 
the channel distortion output vector as:

( ) [ ]TTT gHagHaHg,a,v K0 ∆∆=∆ ,,K ,               (25)  

 we can rewrite (24) as: 
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where the minimization is over every S∈����  and for every 
possible transmitted sequence of length 2L+K+1. From the 
Cauchy-Schwarz inequality, we have 

( ) ( ) ( )Hg,a,vHg,a,vεHg,a,vε
T

∆−≥∆⋅−≥∆ .         (27) 

Furthermore, it is clear that, for some vector ε , such that 
1≤ε , the equality holds, i.e.:  

( ){ } ( ){ }Hg,a,vHg,a,vε
ga,

T
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minmin ∆−=∆ ,                (28) 

hence, substituting the explicit form of the norm (27) into (26), 
yields the final optimization problem: 
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The above constraint is of the form ( ) ( )ggf 21 f≥ , where 
the scalar ( )gf1  and the vector ( )g2f  depend affinely on the 
optimization variables g. Such inequalities define a convex set, 
which is called a second order cone (SOC). Thus, the SOC 
program in (29) can be solved efficiently using standard 
optimization packages, i.e., [8].  

The number of constraints, in (29), is proportional to the 
number of different transmitted sequences with the length of the 
effective channel, i.e., the length of the convolution of the 
channel and equalizer, 2L+K+1. A solution to (29), RPD���� , will 
satisfy the constraint (29) for every channel instance in the 
uncertainty region, S∈���� . Criterion (29) is a generalization of 
the standard PD criterion. In the case that there exists only one 
transmission channel, (29) reduces to the formulation of noise 
limited PD, [4]. Furthermore, for the single channel case, it is 
clear that any RPD����  is optimal in the sense of the original PD 
criterion [1].  

Note, that if a single channel instance, from the set S, will 
lead to a closed eye at the equalizer output, then the above SOC 
may not result in a feasible problem. 

4. SIMULATION 

In this section, we provide simulation results demonstrating 
the performance of the RPD equalizer. We have simulated 
different channels with different uncertainty parameters and 
measured the average error probability over the channel 
uncertainty set. 
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Figure 2: BER performance for the worst-case channel, 1=α . Figure 3: Average BER performance, robust MMSE vs. robust PD. 

In all of our simulations the RPD equalizer outperformed 
the standard PD, MMSE and the robust MMSE [5] equalizers 
for sufficiently low error probability.  

It is important to note, that in the case of channels with 
severe ISI, a linear equalizer is limited and does not attain these 
probabilities. But, in the cases where it did attain them, the 
RPD equalizer overall performance was superior. We now 
present three illustrative examples.  

As a first example, we consider a case where the 
propagation channel, with 3 taps, is estimated with a given 
bound on the estimation error: 

( ) ( ),,,,, 210210 hhhhhh ∆∆∆+= α����        (30)        

where ( ) ( )15.0,4.0,0.1210 ,, =hhh , ( ) ( )25.0,4.0,02,, 10 =∆∆∆ hhh ,
and ∈α [-1,1]. We compare the worst-case sequence SINR 
performance, as a function of α , for the PD and the RPD 
equalizers, with 4 taps. We repeat the calculation for different 
uncertainty regions scenario when we account for 50%, 75% 
and 100% of the given uncertainty region. For example, 
ro=50% in Fig. 1, means that in the design of the RPD, see 
(29), we used ����∆5.0 . The results are provided in Fig. 1. 
Observing the performance of the standard PD equalizer, it is 
obvious that the performance degrades significantly as the 
propagation channel changes from the nominal value at 0=α .
The worst-case SINR of the worst-case channel is at 1=α and

1−=α . In the case of 1=α , the robust counterparts succeed 
to maintain a lower amount of degradation  

In Fig. 2, we compare the BER of the PD, MMSE, RPD and 
robust MMSE [5] equalizers. The RPD equalizer achieved an 
improvement of 3dB and 2dB from the standard PD equalizer 
and robust MMSE equalizer, respectively.  

In Fig. 3, we compare the average BER performance of the 
RPD equalizer to the robust MMSE equalizer, with 4 taps. In 
the case that the channel is given by ( ) ( )8.0,8.0,0.1210 ,, =hhh ,
( ) ( )1.0,1.0,02,, 10 =∆∆∆ hhh  and ∈α [-1,1]. The results show 
that above 13dB, the RPD equalizer outperforms the robust 
MMSE equalizer significantly. 
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