
FAST TECHNIQUES FOR COMPUTING FINITE-LENGTH MMSE DECISION FEEDBACK
EQUALIZERS

Ricardo Merched ∗

Dept. of Electrical Engineering
Federal University of Rio de Janeiro, Brazil

E-mail: merched@lps.ufrj.br

Nabil R. Yousef

Broadband Systems Engineering Group
Broadcom Corporation, Irvine, CA
E-mail: nyousef@broadcom.com

ABSTRACT

The existing computationally efficient methods for computing the
finite length minimum mean-square-error decision feedback equal-
izers (MMSE-DFE) rely on fast methods for Cholesky decompo-
sition, which may face several implementation difficulties. As the
demand for broadband communications increases, developing less
complex methods is highly motivated. In this paper, we propose
new techniques for computing the (MMSE-DFE) coefficients. The
new algorithms are obtained by identifying the relationship be-
tween the feedforward equalizer computation and well known fast
recursive least squares (RLS) adaptive algorithms, and the feed-
back equalizer as a convolution of the feedforward equalizer with
the channel. The proposed algorithms are less complex, more struc-
tured, and more stable in finite precision than known methods en-
countered in the literature.

1. INTRODUCTION

Equalizers are essential building blocks of communication sys-
tems, especially in broadband applications where inter-symbol-
interference is a critical problem. In many of such systems, the
transmitted signal consists of a known training sequence followed
by unknown data. An efficient equalization technique in this sce-
nario, is to first estimate the channel impulse responses between
the transmitter and receiver using the training sequence, and then
use this estimate to compute the optimal decision feedback equal-
izer (DFE) tap coefficients corresponding to the estimated channel.
The computed tap coefficients are then uploaded to the equalizer
taps. This procedure should be repeated as often as possible, es-
pecially in cases of fast varying channels. Moreover, the received
data stream is usually buffered during the period needed for channel
estimation and the equalizer tap computation.

In this context, a critical factor for the success of this equaliza-
tion structure is the complexity of the DFE tap computation. A fast
computation technique has the following benefits:

1. It reduces the memory size required to buffer the received se-
quence during the period required for tap computations.

2. It allows more frequent uploading of new equalizer coefficients,
thus enabling the equalizer to track fast channel variations.

3. It simplifies the needed hardware, especially if such computa-
tions are performed through structured recursive equations.

∗R. Merched is with the Dept. of Electrical Engineering of Federal Uni-
versity of Rio de Janeiro, Brazil. His research is partially funded by CNPq,
Brazil.

Now, the current most efficient method for computing the opti-
mal tap coefficients of a MMSE-DFE rely on the use of generalized
Schur algorithm for fast Cholesky decomposition of the matrices
involved in both feedback and feedforward filters computation [1].

In this paper, we propose an efficient method for computing the
optimal MMSE-DFE coefficients via some defining relations of fast
recursive-least-squares (RLS) adaptive algorithms. The proposed
fast algorithm has less overall computational complexity (for the
same channel and DFE filter lengths) and appears to be more sta-
ble in finite precision than the method in [1]. Moreover, unlike
the method in [1], the proposed method relies on the use of a set
of structured recursions, which makes it attractive for data-path
implementations.

2. FINITE-LENGTH DFE FORMULATION

Consider the discrete-time DFE-channel equalization model de-
picted in Fig. 1. For simplicity of presentation, we shall assume a

H(z) G(z)

B(z)

−

 Channel
x(n) x(n−δ)

 noise

y(n)

 (N taps) (L taps)

 (M taps, strictly causal)

x(n−δ) ^
Decision

Fig. 1. Discrete symbol-spaced DFE model.

symbol-spaced model for the equalizer. Extension to the fractionally-
spaced case is straightforward. In addition, we shall make the fol-
lowing commonly used assumptions (see, e.g., [1]):

• The input sequence {x(n)} is complex, iid, with unit power.

• The additive noise v(n) is Gaussian with autocorrelation
matrix Rv .

• The decisions x̂(n−δ) are assumed to be correct, and hence
equal to x(n − δ).

• The feedforward filter G(z) has length L. The number of
taps M of the feedback filter B(z) is assumed greater or
equal to the channel memory, i.e., M ≥ N − 1.

Our goal is to minimize the mean squared error quantity

ξ = E|x(n − δ) − x̂(n − δ)|2 , (1)

where x̂(n − δ) is the delayed input signal estimate prior to the
decision. By collecting the tap coefficients of G(z) and B(z) into

IV - 10050-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

vectors, we can express the received signal x̂(n − δ) as

x̂(n − δ) = yng − x̌nb ,

where the received vector is given by

yn = xnH + vn , (2)

H is the (N + L − 1) × L convolution matrix associated with the
channel matrix coefficients h(0), h(1), . . . , h(N − 1), given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) 0 · · · 0
h(1) h(0) · · · 0

...
...

. . .
...

h(N − 1) h(N − 2)
. . . h(0)

0 h(N − 1)
. . . h(1)

...
...

. . .
...

0 0 · · · h(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The row vector xn is the 1 × (N + L − 1) input regressor

xn
∆=

[
x(n) x(n − 1) · · · x(n − N − L + 2)

]
The row vector yn is the 1 × L input regressor to the feedforward
filter g, i.e.,

yn
∆=

[
y(n) y(n − 1) · · · y(n − L + 1)

]
Similarly, x̌n is the 1 × M input regressor to the (strictly causal)
feedback filter b, i.e.,

x̌n
∆=

[
x(n − δ − 1) · · · x(n − δ − M)

]
Also, vn is the 1 × L noise vector process.

2.1. Minimization with respect to {g, b}
By collecting g and b into a single vector w, the minimization of
(1) can be written as

min
w

E

∣∣∣∣∣∣∣∣∣
x(n − δ) − [yn − x̌n]︸ ︷︷ ︸

u

[
g
b

]
︸ ︷︷ ︸

w

∣∣∣∣∣∣∣∣∣

2

.

Now, denoting Ru the variance of the augmented input regres-
sion vector u, and crossvariance Rux(n−δ), the well known solution
to this smoothing problem is given by [2]

wopt = R−1
u Rux(n−δ) , (4)

where

Ru
∆= E

[
y∗

n

−x̌∗
n

] [
yn −x̌n

]
=

[
Ry −Ryx̌

−Rx̌y Rx̌

]
.

and

Rux(n−δ) = E
[

y∗
nx(n − δ)

x̌∗
nx(n − δ)

]
=

[
Ryx(n−δ)
Rx̌x(n−δ)

]

Using the channel output model in (2), and the fact that x(n)
is iid, we can obtain the following closed form expressions for
{Ry, Ryx̌, Rx̌, Ryx(n−δ), Rx̌x(n−δ)}:

Ry = Ey∗
nyn = Rv + H∗H ,

Ryx̌ = H∗(Ex∗
nx̌n) = H∗

[0(δ+1)×M

IM

0(N+L−M−δ)×M

]
∆= H̄∗

Rx̌ = IM

Ryx(n−δ) = H∗Ex∗
nx(n − δ) = H∗

[
01×δ

I
0

]
∆= h∗

Rx̌x(n−δ) = 0

where H̄ is a submatrix of H , such that

H =

⎡
⎣ H1

H̄
H2

⎤
⎦ , where H1 is (δ + 1) × L

Now, with the quantities defined above, Eq. (4) becomes

wopt =
[

Rv + H∗H −H̄∗

−H̄ I

]−1 [
h∗

0

]
.

Using a well known inverse of block matrices, we can write

wopt =
[

I
H̄

]
(Rv + H∗

1 H1 + H∗
2 H2)−1h∗ .

Note further that because we have assumed M ≥ N − 1, the
quantities hδ , H1 and H2 are such that[

H1

H2

]
=

[
Hδ 0
0 H̃

]
and h =

[
hδ 0

]
.

This implies the following expressions for the optimal feedback
and feedforward coefficients:

gopt = (Rv + H∗
δ Hδ)−1h∗

δ (5)

bopt = H̄gopt (6)

Here, we want to stress that the above expressions are valid for all
values of the delay δ. In general, the optimal value for the decision
delay δ is within the range L − 1 ≤ δopt ≤ N + L − 2.

2.2. Prior Art

An alternative approach for optimizing (1) which has been used in
[1] and the references there in, is to define an extended vector [x(n−
δ) x̌n], and minimize (1) with respect to g and the augmented

coefficient vector b′ ∆=
[

1
b

]
such that the minimization of (1)

becomes

min
w

E
∣∣[x(n − δ) x̌n]b′ − yng

∣∣2 (7)

with the constraint that the first matrix coefficient of b′ is equal to
1. When M = N − 1 and δ = L − 1, this approach results in the
following expressions for {g, b} (see [1]):

gopt = (Rv + H∗H)−1H∗
[

0
b′

opt

]
(8)

where

[
0

b′
opt

]
is obtained from the Cholesky factorization

(I + HR−1
v H∗) = LDL∗ . (9)

We call the attention of the reader for a few points:

IV - 1006

➡ ➡

• The current most efficient procedure for finding the opti-
mal DFE coefficients according to (8) and (9) involves two
steps: (i) Performing the Cholesky factorization of (9) us-
ing the Generalized Schur algorithm; then (ii) computing
the feedforward filter via the Levinson’s recursion or the
back-substitution method.

• Equations (8) and (9) are equivalent to (5) and (6) due to
the uniqueness of wopt when (1) is minimized. Note, how-
ever, that (5) and (6) represent much more compact expres-
sions [for example, bopt is obtained simply by a convolution
operation in (6)].

Next, we show that the expressions obtained in (5) and (6)
provide alternative methods for computing gopt and bopt in a simpler
and more efficient way.

3. FAST COMPUTATION OF gggopt

Let us define the coefficient matrix

Pδ
∆= (Rv + H∗

δ Hδ)−1 .

The optimal solution for the feedforward coefficients is then given
by

gopt = Pδh
∗
δ .

We can readily recognize that the quantity gopt = Pδh
∗
δ corre-

sponds to the definition of the Kalman gain vector, used to update
the optimal weights in a regularized RLS problem. More specifi-
cally, given an (n + 1) × L data matrix Hn and the corresponding
coefficient matrix Pn, the Kalman gain gn = Pnh∗

n can be time-
updated according to the following recursions (see, e.g., [2]):

γ−1(n) = 1 + hnPn−1h
∗
n , (10)

gn = Pn−1h
∗
nγ(n) , (11)

Pn = Pn−1 − gnγ−1(n)g∗
n , (12)

where P−1 = R−1
v and g0 = 0.

On the other hand, the computation of gn can be done effi-
ciently, via a fast RLS recursion. For example, consider Eq. (11),
which can be written as

gn = knγ(n) ,

where γ(n) is defined in (10). The quantity kn = Pn−1h
∗
n is

referred to as the normalized Kalman gain matrix in adaptive RLS
filtering. One way of achieving a fast recursion is to propagate kn

efficiently, by successive order updates and order downdates of kn,
by means of forward and backward LS prediction problems. The
well known fast transversal filters (FTF) [3] is an example where
such fast technique is encountered, when Rv = σ2

vI . Note that
here, because M ≥ N − 1, the matrix Hδ has a lower triangular
structure and the desired signal for the backward prediction problem
is always equal to zero. As a result, the least-squares backward
prediction solution up to time δ will be equal zero, and the fast
algorithm will need to rely only on the forward prediction part.
That is, perform the order-update

kL,n−1 −→ kL+1,n−1

so that
kL,n = kL+1,n−1(1 : L)

Table 1 lists the resulting fast algorithm.1

1It is well known that the exponentially weighted FTF algorithm can

Initialization

ζf (−1) = σ2
v

wf
−1 = kL,0 = 0

γ(0) = 1

For n = 0 to δ, repeat:

αL(n − 1) = h(n) − hn−1wf
n−2

f(n − 1) = γ(n − 1)α(n − 1)

kL+1,n−1 =
[

0
kL,n−1

]
+ f∗(n−1)

σ2
v

[
1

−wf
n−2

]

ζf (n − 1) = ζf (n − 2) + α∗(n − 1)f(n − 1)
wf

n−1 = wf
n−2 + kL,n−1f(n − 1)

γ(n) =
σ2

v
ζf (n−1)

kL,n = kL+1,n−1(1 : L)

Set gopt = kL,δγ(δ)

Table 1. FTF Computation of gopt for the case of white noise.

3.1. Fast Array Computation of gopt

The FTF algorithm propagates explicitly the quantities kn and
γ(n), so that at the end of the recursions we can obtain the op-
timal feedforward filter coefficients as gopt = kδγ(δ).

On the other hand, its fast array counterpart (see, e.g., [2]), is
one that propagates the square-root normalized quantities k̃n and
γ−1/2(n), so that the optimal feedforward filter coefficients in the
end of the array recursions are computed as gopt = k̃δγ

1/2(δ).
Hence, the fast recursions in Table 1 can be equivalently written in
array form, which is listed in Table 2.

Here, Θn is a unitary matrix that produces the zero entry in the
above post-array, and is computed via a stable circular rotation:

Θ =
1√

1 + |ρ|2
[

1 ρ
ρ∗ −1

]
, where ρ =

[h(n) hn−1]tn

γ−1/2(n)
.

become unstable in finite precision implementation. Hence, one might
wonder whether this is also the case for the simplified algorithm, since both
have the same essence. There are three advantages, however, that prevent
the simplified algorithm from becoming unstable:

(i) The main source of error propagation in the full FTF algorithm arises
in the backward prediction section of its recursions [4]. Here, by ruling
out the equations associated with the backward prediction problem we are
automatically eliminating many of the recursive loops that contribute to the
unstable behavior of the full FTF algorithm.

(ii) Another source of instability of the FTF recursions is related to the
forgetting factor λ which appears in the exponentially weighted RLS prob-
lem. Theoretically with λ < 1, the redundant components generated by
numerical errors would decay to zero as N → ∞. However, an averag-
ing analysis [5] shows that this will lead to unstable modes at 1/λ which
will cause instability in finite precision. Now, note that the above fast re-
cursions deal with the problem of filtering a finite set of data samples of
the channel model. In other words, for our purpose, the algorithm must
stop when n = δ. Moreover, here the corresponding forgetting factor is
always equal to one, in which case the recursions will present much better
numerical behavior. This means that even if the simplified fast algorithm
were to become unstable, it would not be likely to happen within the first
δ iterations. Furthermore, if this was still the case, a simple increase of
wordlength would overcome the problem. We have performed extensive
simulations under finite precision implementations and observed no sign of
instability.

IV - 1007

➡ ➡

Initialization

k̃0 = 0
γ−1/2(0) = 1

t0 = 1
σv

[
1 0L

0L 1

]

For n = 0 to δ, repeat:

⎡
⎣ γ− 1

2 (n) [h(n) hn−1]tn[
0

k̃n

]
tn

⎤
⎦ Θn =

⎡
⎣ γ− 1

2 (n + 1) 0[
k̃n+1

0

]
tn+1

⎤
⎦

Set gopt = k̃δγ1/2(δ)

Table 2. Fast Array Computation of the feedforward coefficients.

4. FAST COMPUTATION OF FEEDBACK EQUALIZER

The filter convolution that defines the optimal feedback coefficients
in Eq. (6) can be computed directly with LM/2 multiplications.
Alternatively, this can be achieved efficiently via well known fast
FFT convolution techniques, by extending the Toeplitz structure of
H̄ to form a K × K circulant matrix C = F ∗ΛF , where F the
K ×K DFT matrix (K is the smallest power-of-two integer larger
than or equal to (M + L)). The matrix Λ is diagonal and contains
the elements of the DFT of the first column of C. The solution for
bopt then becomes

bopt = [IM 0]F ∗ΛF

[
gopt
0

]
.

The overall complexity simply amounts to 2M + 6M log2(2M).

5. ADVANTAGES OVER KNOWN PRIOR ART

The previous discussions show that the proposed method has the
following differences from the known prior art:

5.1. Lower Computational Complexity

Note that the Cholesky factorization of the prior art in (9) involves
the full convolution matrix H defined in (3), which has dimensions
(N + L − 1) × L. In this case, the computational complexity
required for the generalized Schur algorithm is O(NL), that is,
it depends on the channel length. The total number of complex
multiplies of the method in [1] is given there in by

6LM + 12L − 4M − 8 + L2

Now, the fast algorithm proposed for the computation of gopt re-
quires O(δL) operations, that is, it is not dependent on the channel
length, but on the decision delay δ. This will make considerable
difference for long channels, and for small values of δ. The total
complex multiplies of the algorithm in Table 1 is given by

3(δ + 1)(L + 1)/2 + min{2M + 6M log2(2M), LM/2}

Figure 2 shows the reduction in complexity versus L of the
proposed method with respect to the method in [1], for M = 64
and δ = L − 1. The figure show that the proposed method can
reduce from 85 to 95% of the overall tap computation complexity
for L within 64 coefficients.

0 10 20 30 40 50 60 70
85

86

87

88

89

90

91

92

93

94

95

C
om

pl
ex

ity
 R

ed
uc

tio
n

%

Number of Feedforward Taps (L)

M=64,δ=L−1, Symbol spaced

Fig. 2. Complexity reduction compared to the method in [1].

5.2. More Stability in Finite Precision

The feedback bopt is easily obtained via stable fast convolution
methods without resorting to any recursive algorithm. This is in
contrast to the computation of the feedforward filter in the prior art
via Levinson’s or the back-substitution algorithm, which may not
be reliable under finite precision implementations.

5.3. Simpler Structured Recursions

For FFE tap computations, the proposed method relies on iterating
the recursions given in Tables 1 or 2. Note that the updates in
Table 1 are very similar to the operations needed to iterate the
widely used LMS algorithm, which is well known for its simplicity.
This is unlike the prior art which requires iterating non-structured
equations which might be more difficult to implement. In addition,
the computation of gopt in Table 2 can be efficiently implemented
via CORDIC processors.

6. CONCLUSION

We proposed new fast techniques for computing MMSE-DFE co-
efficients. In comparison with the current known methods, the
proposed method is less complex, uses more structured equations,
and is more stable in finite precision. The approach of this paper
easily accommodates fractionally-spaced models and can be further
extended to the case of colored noise.

7. REFERENCES

[1] N. Al-Dhahir and J. M. Cioffi, “Fast Computation of Channel-Estimate Based
Equalizers in Packet Data Transmission,” IEEE Trans. on Signal Processing,
vol. 43, no. 11, pp. 2462–2473, Nov. 1995.

[2] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, NJ,
2000.

[3] J. Cioffi and T. Kailath, “Fast recursive-least-squares transversal filters for adap-
tive filtering,” IEEE Trans. on Acoust., Speech Signal Processing, vol. ASSP-
32, pp. 304-337, April 1984.

[4] P. A. Regalia, “Numerical stability issues in fast least-squares adaptation algo-
rithms,”Optical Egineering, vol. 31, pp. 1144–52, Jun. 1992.

[5] D. T. M. Slock and T. Kailath, “Numerically stable fast transversal filters for
recursive least-squares adaptive filtering," IEEE Trans. on Signal Processing,
vol. 39, pp. 92-113, Jan. 1991.

IV - 1008

➡ ➠

