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ABSTRACT

In this paper, we use the Preconditioned Conjugate Gradi-
ent (PCG) method to rapidly compute the tap weights of
a minimum mean-square error (MMSE) decision feedback
equalizer (DFE). The equalizer setting is computed indi-
rectly after channel estimation. According to the Toeplitz
block structure of the MMSE DFE equation Rw = r, the
preconditioner P is chosen to be a block diagonal matrix
with circulant blocks along its diagonal. The spectral clus-
tering property of the preconditioner matrix is analyzed. It
is shown that the eigenvalues of P−1R are clustered around
unity except for a small number of outliers when the num-
ber of the equalizer taps becomes large. The preconditioner
can be inverted via Fast Fourier Transform (FFT) with com-
plexity O(N log N). Since the PCG method converges in
a small number of steps, the total complexity for comput-
ing the DFE setting is proportional to O(N log N). The
proposed scheme is also suitable for ”smart” initialization
which can further reduce the computational burden by de-
creasing the number of iteration steps. Simulations of a
DFE for Digital TV channels demonstrates superior perfor-
mance of the scheme.

1. INTRODUCTION

The MMSE DFE is widely used in modern communication
systems. It can effectively mitigate intersymbol interfer-
ence caused by frequency selective channels. Recently, the
Indirect DFE has received considerable attention [1][2][3].
While the traditional adaptive DFE’s adapt their setting di-
rectly from the training sequence or symbol decisions, the
Indirect DFE’s tap weights are computed from the channel
estimate. This indirect approach has been shown to exhibit
a better performance and tracking ability over the direct
DFE[1].

∗This research was supported by the Air Force Office of Scientific Re-
search under Grant no. F49620-03-1-0149 and also by the Zenith Elec-
tronics Corporation.

In the Digital TV application, the DFE is required to
have a large number of taps in both the feedforward (FF) and
feedback (FB) filter. For example, the DFE used in Digital
TV systems might have as much as 512 FF taps and 512 FB
taps. For such cases, the large computational complexity of
computing the DFE weights from the channel is a major dif-
ficulty for implementation and real-time adaptation of such
equalizers. Several methods have been proposed to reduce
the computational burden of Indirect DFE. In [2], the in-
verse of circulant matrix is used to approximate the inverse
of a Toeplitz matrix. In [3], a generalized Schur algorithm
is used to do the complex Cholesky factorization to solve
the matrix equation.

In this paper, we tackle the problem by using the Precon-
ditioned Conjugate Gradient method, an iterative scheme,
to solve the MMSE DFE equation. Comparing with the
standard Conjugate Gradient method, which has recently
been widely used in adaptive filtering and image restora-
tion [4], the PCG method effectively accelerates the con-
vergence rate by using a preconditioning matrix P. Since
the number of iteration steps needed for CG depends on the
number of distinct eigenvalues of the system matrix R, a
good preconditioner is (1) a matrix P which clusters the
eigenvalues of P−1R around 1 except a small number of
ouliers and (2) a matrix for which the product P−1b can be
computed efficiently. According to the Toeplitz block struc-
ture of the DFE matrix R, we choose the preconditioner P
to be a block diagonal matrix with circulant blocks along its
diagonal. It is shown that under certain condition, the eigen-
values of P−1R are clustered around 1 except for a small
number of outliers when the number of the equalizer taps
becomes large. By using FFT, the preconditioner can be
inverted with complexity O(N log N). Since the number
of outliers doesn’t depend on N , the total complexity for
computing the DFE setting is proportional to O(N log N).
Moreover, the proposed scheme is suitable for ”smart” ini-
tialization, which can effectively utilize the previous filter
setting or some preliminary approximation to further reduce
the computational burden of adaptation. The simulation re-
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sults on DFE for digital TV channels illustrate the fast con-
vergence of the method and the improved performance.

The outline of the paper is as follows. Section II de-
scribes the MMSE DFE equation and the PCG method. The
preconditioner and its spectral clustering property are ana-
lyzed in Section III. The simulation results are presented in
Section IV. Section V contains a concluding discussion.

2. MMSE DFE AND THE PCG METHOD

2.1. MMSE DFE

The structure of the DFE is shown in Fig. 1. In this model,
h(k) is a ”composite” channel impulse response that com-
bines the effects of transmitting pulse, the multipath chan-
nel response, and receiver match filter. We assume that the
h(k) extends over 0 <= k <= L, the noise n[k] is additive
white Gaussian with σ2

n and the symbol is i.i.d. with en-
ergy ε2

s. Both the h[k] and the σ2
n are already known from

channel estimation. The equalizer is symbol spaced but the
result can be easily extended to the fractionally spaced case.
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Fig. 1. Block Diagram of DFE

We denote the Nff taps FF filter by wff = [wff [0], wff [1],
. . . , wff [Nff−1]]T , the Nfb taps FB filter by wfb = [wfb[1],
wfb[2], . . . , wfb[Nfb]]T . Let s[k] be the transmitted sym-
bols, y[k] be the input to the DFE. Their relation in vector
form is given by:

yk = Hsk + nk = xk + nk (1)

where
yk = [y[k], y[k − 1], . . . , y[k − Nff + 1]]T ,

sk = [s[k], s[k − 1], . . . , s[k − Nff − L + 2]]T ,

nk = [n[k], n[k − 1], . . . , n[k − Nff + 1]]T ,

and H =

⎡
⎢⎢⎢⎢⎣

h[0] h[1] . . . h[L] 0 . . . 0

0 h[0] h[1] . . . h[L] . . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 h[0] h[1] . . . h[L]

⎤
⎥⎥⎥⎥⎦.

Assuming the decisions are correct and with delay ∆,
which is optimally selected to be Nff , the error is defined as

e[k] = s[k − ∆] − r[k]
= s[k − ∆] − w∗

ffyk − w∗
fbs[k − ∆ − 1] (2)

= s[k − ∆] − w∗uk

where uk = [yT
k , sT

k−∆−1]
T , sk−∆−1 = [s[k−∆−1],

s[k−∆−2], . . . , s[k−∆−Nfb] ]T , and w = [wT
ff , wT

fb]
T .

Using the orthogonal principle, we obtain the DFE equa-
tion:

Rw = r (3)

where R = E{uku∗
k} and r = E{uks[k − ∆]∗}. It is

helpful to partition R into blocks:

R =
[

Ryy Rys

Rsy Rss

]
(4)

Notice that Ryy = E{yky∗
k} is symmetric Toeplitz and

Rss = E{sk−∆−1s∗k−∆−1} is diagonal, while Rys =R∗
sy =

E{yks∗k−∆−1} usually is not square matrix and becomes
Toeplitz only when the FF and FB filters have the same tap
length. So generally, R is only a matrix with Toeplitz blocks
along its diagonal.

2.2. The PCG Method

The widely used CG method solves the equation Rw = r
by minimizing 1

2w
∗Rw − w∗r over w. The convergence

of the CG depends on the eigenvalue spectrum of R. In
particular, the number of iterative steps needed depends on
the number of distinct eigenvalues. Thus, to accelerate the
convergence, the preconditioning is typically used to cluster
the spectrum, which leads to the PCG method.

In the PCG method, an easily invertible matrix P which
makes the eigenvalues of P−1R around 1, or in other words
P−1R ≈ I, is constructed. Then the CG algorithm is then
implicitly applied to the system M−1RM−∗ = M−1r,
with w = M−∗z and P = MM∗. The PCG steps are
listed in Table 1.

Table 1. PCG algorithm
Initialization: b0 = r − Rw0; k = 0
While ‖b0‖ > δ:

zk = P−1bk

k = k + 1
βk = z∗k−1rk−1/z∗k−2rk−2, (β1 ≡ 0)
qk = zk−1 + βkqk−1, (q1 ≡ z0)
αk = z∗k−1rk−1/q∗

kRqk

wk = wk−1 + αkqk

bk = rk−1 − αkRqk

Each iterative step of the PCG is more expensive than
CG, since it needs to computer the matrix-vector product
P−1bk. However, the convergence can be significantly im-
proved; hence the total cost of solving Rw = r can be
much less. Usually for point Toeplitz system, a circulant
matrix is selected to the preconditioner, because it can be
easily inverted via FFT and it converges to the Toeplitz ma-
trix asymptotically.
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3. THE PRECONDITIONER AND ITS
CLUSTERING PROPERTY

Considering the R matrix in the DFE equation, if we sub-
stitute the channel estimation H, noise energy σ2

n and the
symbol energy ε2

s into (4), we get

R =
[
Ryy Rys

Rsy Rss

]
=

[
ε2

sHH∗ + σ2
nINff

ε2
sHJ∆

ε2
sJ

∗
∆H∗ ε2

sINfb

]
(5)

where J∆ = E{sks∗k−∆−1}. Generally the blocks on the
anti-diagonal of R are not square; but it contains Toeplitz
blocks along its diagonal. So it is natural to let the precon-
ditioner P to have the same block structure as R and be
defined as:

P =
[

c(Ryy) 0
0 c(Rss)

]
=

[
c(Ryy) 0

0 ε2
sINfb

]
(6)

where c(.) denotes some operator which constructs a cir-
culant matrix from a Toeplitz matrix. For diagonal matrix
Rss, c(.) has no effect. There are a lot of c(.) operators for
point Toeplitz matrices in the literature. Here we use the one
proposed in [4]. For any symmetric Toeplitz N × Nmatrix
T, we have

c(T)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1+tN−1 t2+tN−2 . . . tN−1+t1

t1+tN−1 t0 . . . . . .
...

t2+tN−2
. . .

. . . . . .
...

...
. . .

. . .
. . .

...
tN−1+t1 . . . . . . . . . t0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Note that all elements of T are used to construct c(T)
and the following property can be easily derived from the
results in [4].

Lemma 1. Assuming the generating sequence of the
positive definite Toeplitz matrix sequence Tn is absolute
summable,

∑+∞
i=−∞ |ti| ≤ ∞; then for large n, c(Tn)−Tn

is the sum of two matrices Ln and Vn. Ln is a low rank ma-
trix whose rank doesn’t depend on n, and the largest eigen-
value of Vn satisfies λmax(Vn) ≤ ε.

For the preconditioner P defined in (6), the following
lemma gives its asymptotic characteristic.

Lemma 2. Let R be as in (5) and P as in (6), then for
large Nff and Nfb, the matrix R − P can be decomposed
into a sum of a low rank matrix whose rank doesn’t depend
on Nff and Nfb, and a small norm matrix whose largest
eigenvalue λmax ≤ ε.

Proof : It is obvious that

R−P =
[

Ryy − c(Ryy) 0
0 0

]
+

[
0 Rys

Rsy 0

]
(8)

Since the channel sequence is finite length, the generating
sequence of Ryy is always absolute summable. By using

Lemma 1, the first matrix in the right side of (8) is the sum
of a low rank matrix with rank not depending on the size
of R and a small norm matrix. When the Nff and Nfb are
both large, we have

J∆ =
[

0(∆+1)×(L−2) 0(∆+1)×(Nfb−L+2)

I(L−2)×(L−2) 0(L−2)×(Nfb−L+2)

]

So the second matrix in the right side of (8) is also a low
rank matrix with rank not depending on Nff and Nfb. By
combining the above, we complete the proof.

Finally, the clustering property of P is described in the
following theorem.

Theorem 1: Let R be as in (5) and P as in (6), then
for large Nff and Nfb, most of the eigenvalues of P−1R
is clustered between (1 − ε, 1 + ε), and the number of the
outliers doesn’t depend on Nff and Nfb.

The theorem can be easily proved by combining Lemma
2 and the Cauchy Interlacing theorem [5].

From Theorem 1, we can see that by using the pre-
conditioner P, for large large Nff and Nfb, only a small
number of iteration steps are needed to solve the DFE equa-
tion. Due to its circulant block structure, the matrix-vector
product P−1b can be computed via FFT with complexity
O(N log N),N = Nff + Nfb. So the total complexity for
computing the DFE setting is proportional to O(N log N).

4. SIMULATION RESULTS

The DFE in a 8-VSB Digital TV system is simulated. The
Digital TV channel is assumed to be known for the pur-
poses of constructing the MMSE DFE equation. The first
channel we use for simulation is a standard testing Digital
TV channel (Brazil-C). It contains echoes at −0.96Ts, 0Ts,
3.55Ts, 15.25Ts, 24.03Ts, and 29.16Ts with corresponding
gains 0.73, 1, 0.64, 0.98, 0.74, and 0.86. We also tested our
scheme on randomly generated channels with length 128,
which model some dense channels. The result is averaged
over 5000 randomly generated channels. The channel im-
pulse is the convolution of the path rays with the raised co-
sine function having excess bandwith 0.115. The phase of
each path gain was set to 2πfcTsdi where is the carrier fre-
quency fc of 50MHz, Ts is the symbol period 91.9ns, and
di is the relative path delay.

In the simulation, both the FF part and FB part of the
DFE have 512 taps, the delay of the DFE is optimally set
to be 512, and the receiver has a SNR of 30dB, which is
defined as SNR = ε2

s‖h‖2/σ2
n. The DFE equation is con-

structed from the channel and the noise parameters. The
MSE of the equalizer output is calculated as MSE = ε2

s +
w∗Rw − 2w∗r. Fig. 2 shows the iterative curve of PCG
solving the DFE for Brazil-C. In Fig. 3, we can see the av-
eraged iteration curve for dense channel and the comparison
with the regular CG method.
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Fig. 2. iterative curve for Brazil-C

Fig. 3. iterative curve for random dense channels

It can be seen that the PCG only needs less than 10 itera-
tions to achieve the minimum MSE DFE weights. The easy
initialization feature makes the PCG method very suitable
for tracking time variations via Indirect DFE.

We also simulated the PCG with ”smart” initialization.
In the Digital TV scenario, the channel variation during
each frame period is relatively small. So by initializing the
PCG method with the previous DFE tap values reduces the
number of PCG steps needed to get very close to the min-
imum MSE. A time varying channel is constructed from
Brazil-C by inducing a 100Hz Doppler shift. The chan-
nel estimation is updated at each frame and the PCG is ini-
tialized by the previous DFE weights. The iteration curve
with ”smart” initialization is shown in Fig. 4. Clearly, the
”smart” initialization greatly decreases the computational
burden and thus enhances the adaptation ability of the DFE.

Fig. 4. iteration curve of PCG with initialization

5. CONCLUSION

The PCG method is used for fast computation of indirect
DFE. The preconditioner P is chosen to be a block diago-
nal matrix with circulant blocks on its diagonal. The spec-
tral clustering property of the preconditioner matrix is ana-
lyzed. It is shown that the eigenvalues of P−1R are clus-
tered around unity except a small number of outliers. The
proposed scheme is also suitable for ”smart” initialization
which can further reduce the computational burden by de-
creasing the number of steps needed. The simulations on
DFE for digital TV channels show the fast convergence prop-
erty of the scheme.
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