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ABSTRACT

A multi-user detector with scalable complexity that achieves

the maximum likelihood (ML) solution for two users and

gives good sub-optimal performance for a higher number of

users is proposed. The key idea is to construct a look-up

table based on the geometric structure of the signal constel-

lation, and then perform fast decoding based on the look-

up table. The proposed detector is near-far resistant and its

performance is consistently better than existing sub-optimal

detectors when the number of users is greater than the num-

ber of dimensions. The robustness of the detector against

noise can be controlled at the expense of higher complexity.

1. INTRODUCTION

The goal of multi-user detection is to correctly demodu-

late the information bits of mutually interfering users in a

noisy communication system. The performance bound for

joint detection is given by the maximum likelihood (ML)

detector, which determines the most likely bits sent over the

channel. While the ML detector (sometimes called the op-

timal detector [1]) achieves the lowest probability of error

for joint detection, it has a complexity that is exponential

in the number of users. A number of popular approaches

to low-complexity sub-optimal multi-user detection include

interference cancellation and several decision-driven detec-

tors ([2],[3],[4]) have been developed based on this idea.

In this work, rather than subtract the interference of indi-

vidual signals, we have adopted a geometric approach that

exploits the overall structure of the joint signal constella-

tion. The proposed detector is near-far resistant in the sense

that it gives perfect decoding for every user in high SNR

or noiseless situations, regardless of the relative energies of

the interfering users. The near-far resistant property will

continue to hold in oversaturated situations where the num-

ber of users is greater than the number of dimensions. The
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linear minimum mean squared error (LMMSE) detector [1]

and related schemes [5] are not near-far resistant in oversat-

urated systems where the user signals form a linearly depen-

dent set. In noisy channels, we show how the performance

of the proposed detector can be enhanced at the expense of

a reasonable increase in detection complexity.

2. ENERGY CONTOUR (EC) DETECTOR

We assume a synchronous
�

-user system in which the users

transmit BPSK modulated signals � � � � 	 �  � � � � over an AWGN

channel. The received signal can be written in equivalent

discrete-time form as

� � 	 � � ��
� � � � � � � � 	 �  " � 	 � # � � �  �� � � ( � * , #  ,  � (1)

In equivalent signal space notation, Equation (1) can be

rewritten as 1 � 3 4  7 (2)

where

1
is the received vector, 4 is the bit vector or

�
-

tuple sent, 3 � � 9 � 9 ; = = = 9 � � is the � A C � � signal matrix,� 9 �  �� � � are the signal vectors, A is the dimension of signal

space, and 7 is the noise vector modeled as 7 E F � H # J ; K � ,

i.e., as a zero-mean Gaussian A -dimensional random vector

with variance J ;
along each dimension.

The
�

-tuples � 4 L  ; ML � � generate N � constellation points

in signal space. It is easy to verify that constellation points

corresponding to bitwise complements 4 and O4 will have

same energy P P 3 4 P P ;
(where P P T P P ;

denotes the Euclidean

norm). The energy contours of different constellation points

will, therefore, be concentric hyperspheres centered at the

origin. A constellation point corresponding to 4 and its bit-

wise complement O4 will lie along opposite ends of the di-

ameter of the same energy contour. Such a pair of constel-

lation points will henceforth be called a complement pair. It

is possible for complement pairs to share the same energy

contour.

We can set up an energy contour (EC) table that stores

the constellation points sorted in ascending order of their
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energy. Since we need to store only one member of a com-

plement pair, the EC table will have � � � � � � entries. The 	 � 
entry in the table stores the 	 �  signal energy � � in the sorted

list, and the bit vector � � from a complement pair that have

that energy. Once the table is set up, the basic EC detector

works according to the following algorithm:

1. Measure the energy � � of the received signal.

2. Compare � � against the � � � � �� � �  entry of the EC ta-

ble. If � � � � � � �  we need to search only the bot-

tom half of the EC table. Else, we need to search the

top half. The selected half of the EC table containing

� � � �
entries is called the reduced EC table.

3. Repeat Step 2 recursively on the reduced EC table ob-

tained in the last recursion, until we reach a reduced

EC table with only two entries. This is equivalent to

a binary search ([6]) of the EC table and in � ! " $ �
steps we can find a signal energy � � such that

� � ' � � ' * * * ' � � ' � � ' � � 2 � ' * * * ' � � 7 � � � 9

4. Perform a local ML (LML) detection over the two

pairs of constellation points � � � : ;� � � and � � � 2 � : ;� � 2 � �
that correspond to � � and � � 2 � . If 	 ? � � � �

, then per-

form LML detection over � � � : ;� � � and � � � � � : ;� � � � � .

If � � ' � � , then perform LML detection over � � � : ;� � �
and � � � : ;� � � . The LML solution is the decoded re-

sult.

2.1. Complexity

The EC table has � � � �
entries already sorted in ascend-

ing order of energy. Therefore, performing a binary search

we can reach the right entry in A B C � � � � � � � or � ! " $ �
comparisons. Finding the LML solution for two comple-

ment pairs requires E F subtractions (to determine the errorsG �
H

: � � ?
H

" L � ), E F multiplies and E � F " $ � additions to

determine the error energies, and finally, E comparisons to

choose the LML solution. Measuring the received signal’s

energy is basically another inner product operation requir-

ing F multiplies and � F " $ � additions. The total com-

plexity of the basic EC detector is therefore � ! " $ � U E
compares, E F subtractions, V � F " $ � additions and V F
multiplies.

However, to set up the table, we first need to measure the

energy of every complement pair, which in total requires

� � � � F multiplies and � � � � � F " $ � additions (since we

can leave out the complements of every bit vector consid-

ered). Sorting the � � � �
energies in ascending order us-

ing a quick-sort algorithm (see [6] for details) will require

� ! " $ � � Z � � � [
comparisons.

2.2. Decision regions of the EC detector

Consider the constellation point with bit vector � � corre-

sponding to the 	 �  entry of the EC table. The decision re-

gion of � � , denoted as ] � � � � , is given by the union of two

separate regions:

(i) The intersection of the Voronoi partitioning (or LML

decision region) of the constellation point � � with re-

spect to its complement ;� � and the complement pair

� � � � � : ;� � � � � , and the hyper-annulus enclosed between

the energy contours corresponding to the 	 �  and � 	 "
$ � �  entry of the EC table. If _ � � � ` � a : � c : � d � de-

notes the overall Voronoi partition of � � with respect

to � a , � c and � d , and e � denotes the volume enclosed

by the 	 �  energy contour, then this part of the deci-

sion region of � � can be mathematically expressed as:

] � � � � � ? _ � � � ` ;� � : � � � � : ;� � � � � i � e � i ;e � � � �
(ii) The intersection of the Voronoi partition of the con-

stellation point � � with respect to its complement ;� �
and the complement pair � � � 2 � : ;� � 2 � � , and the hyper-

annulus enclosed between the energy contours corre-

sponding to the 	 �  and � 	 U $ � �  entry of the EC table.

Using similar notation we express this part of the de-

cision region of � � as

] � � � � � ? _ � � � ` ;� � : � � 2 � : ;� � 2 � � � i � e � 2 � i ;e � �
Note that e � � � l e � l e � 2 � . Then ] � � � � can be expressed

as

] � � � � ? ] � � � � � m ] � � � � �
A property of Voronoi partitioning is that the constel-

lation point always lies within its decision region. There-

fore, by construction every constellation point will always

lie within its decision region for the EC detector. Of course,

these decision regions will not be the ML decision regions

and hence, the detector will not give optimal decisions in

the presence of noise. However, in the absence of noise

or in sufficiently high SNR situations, it will give perfect

decoding for every user, regardless of the energies of the

interfering users, i.e., the EC detector is near-far resistant.

3. NOISE-ROBUST EC DETECTOR

The basic EC detector is near-far resistant and gives good

performance in high SNR situations. However, in noisy

channels, the received point can be thrown outside the right

hyper-annulus between energy contours, especially when

the radii of the energy contours are close enough. This will

lead to erroneous detection. It is prudent to search within

a window of o energy contours in the EC table where o
is decided upon dynamically based on

H
and the noise vari-

ance p �
. The modified algorithm will then be as follows:

IV - 994

➡ ➡



1. Measure the energy � � of the received signal.

2. Compute the energies � � � � 
 � � � � � � � � �
and � � � � 


� � � � � � � � �
, where � � is the radius of noise pertur-

bation chosen depending on the noise statistics. For

example, for an AWGN channel, we can choose � � 
 ! � " , where  is a controllable parameter.

3. Perform two separate binary searches through the EC

table and in # � % � ' � steps determine the signal en-

ergies � � ( and � � ) such that

� + - � � - 0 0 0 - � � ( - � � � � - � � ( 5 + - 0 0 0 - � � 8 9 : ( =
and

� + - � � - 0 0 0 - � � ) - � � � � - � � ) 5 + - 0 0 0 - � � 8 9 : ( =
Because the EC table is already sorted, we must have

� � ( - � � ) .

4. Perform LML detection over the constellation pairs

that belong to the reduced EC table:

@ � max A + C � ( D E F F F E � min A � 9 : ( C � ) 5 + D H
.

5. The LML solution to the I 
 # � N � � N + � ' � constel-

lation points is the decoded result. Note that P 
 R � .

3.1. Complexity of the modified EC detector

The complexity of setting up the EC table will still be same.

But the complexity of the EC detector will increase with I .

We will need only # � % � ' � comparisons to reach the right

� � ( and � � ) in the EC table, but we will need additional I
comparisons to reach the LML solution. Therefore we will

need � I � ' � " multiplies, � I � ' � � " � ' � additions (to

measure � � and to find the squared error from each of the

I constellation points), I " subtractions (to compute the

errors) and I compares.

3.2. Decision regions of the modified detector

The decision region of every constellation point will be given

by the intersection of

(i) the LML decision region with respect to its comple-

ment and the � I � # � points in the surrounding � P �
' � contours, and

(ii) the hyper-annulus between the energy contours cor-

responding to � � ( and � � ) 5 + .

Therefore, by of Voronoi partitioning, every point will al-

ways lie in its decision region. The modified detector will

still be near-far resistant and we can expect the robustness

against noise to improve as we increase � � . But increasing

� � will increase I and the complexity will go up. In the

limiting case, when I 
 # [ , the EC detector becomes the

ML detector and has exponential complexity in
%

but also

gives ML performance.

Though related, our approach is different from sphere

decoding [7]. The LML search is performed over a hyper-

annulus defined by

\
and � � whereas the basic sphere de-

coding algorithm searches over a sphere centered on the re-

ceived point. Our approach is also different from the class

of LML detectors proposed in [8]. We perform LML search

over constellation points classified according to geometric

proximity, rather than bitwise proximity.

4. SIMULATION RESULTS

The performance of the EC detector was tested against that

of the standard serial interference canceller (SIC) [1], the

linear minimum mean squared error detector (LMMSE) [1],

joint serial interference canceller (JSIC) [4], parallel arbi-

trated SIC (PASIC) [3] and parallel arbitrated JSIC (PA-

JSIC) [4] detectors. The PASIC detector runs the basic SIC

detection algorithm separately on ] different orderings of

the same signal set and then does LML detection over the

] different SIC solutions obtained. PAJSIC is the same as

PASIC except that it uses JSIC detection, for each of the ]
decoding stages. In our simulations, we chose ] 
 # .

Simulations were run over randomized user signatures

@ _ � H [� ` + , where _ � a c � e E f � . The performance of the EC

detector has been tested for  + 
 ' ( h i + ) and  � 
 ' F j
( h i � ). The number of dimensions, " , was chosen to be

j . Figure 1(a) shows the probability of error for sequence

detection (i.e. k m � no q
 o � ) for all the detectors plotted

against increasing SNR for
% 
 t . The performance of

the ML detector is plotted as a lower bound. Figure 1(a)

also shows a comparison of the complexity of the different

detectors for the same set of simulations. The SIC detector

performs
%

inner products, LMMSE performs # %
inner

products (
%

projections to get the matched filter outputs

and another
%

projections to determine the bits) JSIC per-

forms � # � % � ' � � ' � inner products, PASIC with ] 

# performs # %

inner products and then # error compar-

isons. Similarly, the complexity of the PAJSIC detector is

# � # � % � ' � � ' � � # 
 ~ %
. Figure 1(b) shows the probability

of error and detection complexity for the different detectors

plotted against the number of users for SNR = 20dB.

We observe that the EC detectors consistently outper-

form the other sub-optimal detectors in oversaturated situa-

tions (
% � " ). It is also observed that the performance of

the EC detector improves with higher  with a correspond-
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(b) � � and detection complexity plotted against
�

ing increase in complexity. This is expected because the

EC detector with the higher � searches over a larger hyper-

annulus and hence over a larger set of constellation points.

We also observe that its expected complexity for fixed
�

decreases with increasing SNR. This is because the noise

radius � � decreases with increase in SNR, and hence, the

EC detector needs to perform LML detection over a smaller

set of constellation points.

5. CONCLUSION

We have proposed a multi-user detector that has scalable

complexity and is near-far resistant, even when the num-

ber of users is greater than the number of dimensions. For

low SNR situations, the basic EC detector can be adjusted

to give higher robustness against noise at the cost of higher

complexity of detection. A trade-off between decoding com-

plexity and detection error can be achieved by controlling

the noise radius about the received point. The proposed de-

tector will give much better performance than existing sub-

optimal detectors in oversaturated situations, i.e., where the

number of users is higher than the number of dimensions.

The proposed detector assumes perfect knowledge of the

user signals. An interesting future direction will be to an-

alyze how imperfect knowledge of the user signals affects

detector performance. Future work will also focus on ex-

tending the detection algorithm to the asynchronous com-

munication case.
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