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ABSTRACT

Burst-by-burst equalization strategies assume that data in a burst
are received under quasi-stationary channel conditions. Hence,
using a fixed-size burst results in conservative transmission effi-
ciency, since worst case scenarios must be accounted for. In this
work, we investigate the potential of a variable-size burst for effi-
ciency in time-varying environments. First, a channel model ex-
plicitly describing environment changes is developed. Analysis
of variance is then proposed for tracking the channel stationarity.
Based on knowledge of the channel stationarity, the burst size is
adapted most advantageously. Obtained results show feasibility of
a variable-size burst to improve efficiency compared to a fixed-size
counterpart.

1. INTRODUCTION

In high-rate communication systems, with symbol duration less
than the delay spread, frequency-selective fading occurs resulting
in severe intersymbol interference (ISI) [1]. Channel equalization
mitigating ISI is often required for adequate performance in such
cases. A standard procedure is to transmit training symbols, to be
used by the receiver for equalization. For systems transmitting in
bursts, spectral efficiency is inversely proportional to the ratio of
training symbols to the total number of symbols in a burst. More-
over, successful equalization requires a minimum number of train-
ing symbols [2, 3]. This implies that a short burst is inefficient,
since the ratio of training to data symbols might be substantial.

In this work, we investigate the use of a variable-size burst
for efficiency. A similar packet optimization was previously re-
ported in the context of ARQ protocols [4], where packet size was
optimized based on estimates of bit-error-rate. For burst-by-burst
systems considered in this work, the idea is to exploit more sta-
tionary operating conditions to utilize longer bursts. Conversely,
shorter bursts are employed when the encountered channel is more
varying. To this end, a time-varying channel model is first pro-
posed to explicitly describe situations where the coherence times
change. Next, analysis of variance (ANOVA) [5] is applied to track
long durations of stationarity, enabling a larger burst to be used for
efficiency. Obtained results show that a variable-size burst can de-
liver improved efficiency, while maintaining the same quality of
service, compared to a fixed-size burst approach.

This paper is organized as follows. After describing the chan-
nel model in Sec. 2, a variable-size burst structure is proposed
in Sec. 3. A spatio-temporal system employing DS-CDMA, and
a corresponding spatio-temporal equalization strategy using least-
squares are then presented in Sec. 4 and Sec. 5 respectively. Sta-
tionarity tracking using ANOVA is next given in Sec. 6. Finally,
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simulation results and concluding remarks are presented in Secs. 7
and 8, respectively.

2. CHANNEL MODEL

With conventional mobile channel modeling, e.g. Jakes model [1],
a specific environment with a particular coherence time is usually
described. In such models, while the channel may change with
time, its rate of variation is essentially fixed, as determined by an
associated coherence time. However, even if the physical envi-
ronment remains the same, changes in the mobile station’s speed
can render the effective environment significantly different, since
the Doppler spread is modified [1]. In the context of variable-size
burst strategy, a channel model explicitly describing such effective
environment changes is useful.

For a mobile channel with Rayleigh fading, the coherence
time for a particular environment is well characterized using the
Jakes model [1]. However, a piecewise constant approximation
can also be made, resulting in the so-called block-fading model.
In this model, channel coefficients are assumed to be constant or
quasi-stationary over some interval, i.e., over a burst duration, and
change to another state for the next interval [3, 6].

In order to explicitly account for changing environments, the
conventional block-fading model is extended as follows. Assum-
ing that the channel coefficients are quasi-stationary over some
fundamental period, denote the channel coefficients during the kth
fundamental period as pk. Then the channel changes between fun-
damental periods as

pk = νk

�
ηv pk−1 + uv

�
+

�
1 − νk

��
ηq pk−1 + uq

�
(1)

where νk is a Bernoulli random variable (equal to 1 with prob-
ability p), uq ∼ CN (0, σ2

qI) and uv ∼ CN (0, σ2
vI). Hence,

depending on the value of νk, the channel can change according to
either model-q, specified by a correlation constant ηq (between 0
and 1) and variance σ2

q , or model-v, specified by ηv and σ2
v .

By setting ηq to values closer to 1 (high correlation to previous
stage) and σ2

q to be very small (little random change), model-q has
the interpretation of a quasi-stationary state. Likewise, setting ηv

to values closer to 0 and σ2
v to be larger, model-v is the represen-

tation of a varying state. The value of p specifies the probability
that the varying state will occur.

It is easy to see that, with appropriate choices of parameters,
this model includes the conventional block-fading model as a spe-
cial case. Furthermore, we note the following:

• With νk = 1 and the fundamental period being a single
symbol, this model reduces to a Gauss-Markov model [2],
used as an approximation of the Jakes model [6].
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• As a two-state characterization, this model is analogous to
the Gilbert-Elliott channel in [4], with the good state being
the quasi-stationary and the bad state being the varying.

• In essence, this model is the usual block-fading model with
the block size now being variable (multiples of the funda-
mental period).

Hence the proposed model can characterize scenarios where sta-
tionarity conditions change. The smallest coherence time it can
account for is equal to the fundamental period. We shall hence-
forth refer to this model as the variable-size block-fading (VSBF)
model.

The time evolution of the VSBF model can be represented by
defining a transition sequence Ξ of the values νk. For example,
Ξ = [10111111001 . . .] represents a more varying channel, since
it has longer runs of ones. Likewise, for a multi-user or multi-
antenna scenario, a transition matrix can be considered, with each
row characterizing the time evolution of the channel for the respec-
tive user and antenna.

3. VARIABLE-SIZE BURST STRUCTURE

A variable-size burst is constructed by taking advantage of por-
tions in the transition sequence Ξ with runs of zeros. Over these
durations, the channel is more stationary, thus enabling a longer
burst to be valid. Define a fundamental burst Bf (correspond-
ing to the fundamental period) to be a burst consisting of N

(f)
B

data symbols, (this implies quasi-stationarity over any fundamen-
tal burst). All other accumulated bursts to be decoded are con-
structed from fundamental bursts. Hence, an accumulated burst B
has size NB = ρN

(f)
B where ρ is an integer. Training symbols are

sent at the start of each fundamental burst, N
(ξ)
t training symbols

for the ξth fundamental burst (see Fig. 1).
A variable-size accumulated burst is attained by accumulating

a maximum possible number of existing fixed-size fundamental
bursts, while satisfying quasi-stationarity, for decoding. Note that
this strategy can be performed entirely at the receiver, and relies on
the receiver’s ability to track the corresponding transition sequence
(to be described in Sec. 6). This approach has the advantage of not
requiring significant protocol changes, e.g. feedback, in existing
transmitters and receivers designed for regular fixed-size bursts.
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Fig. 1. (a) Accumulated burst of ρ fundamental bursts; (b) Train-
ing sequences (N (ξ)

t ) at start of every (ξth) fundamental burst

4. SIGNAL MODEL

In this section, we establish the signal model for a spatio-temporal
multi-user scenario similar to that originally described in [7], with
A total antennas and M active users. In a DS-CDMA system with

chip duration Tc, denote the overall equivalent discrete-time chan-
nel (sampled at chip rate) for the mth user at the ath receiver ele-
ment as [7]:

pa
m[l] = pa

m(lTc − τm) (2)

where τm is the propagation delay. It is assumed that the chan-
nel is FIR of order qm. Let pa

m[l]|[ξ] be the channel coefficients
during the ξth fundamental burst. The FIR nature of the channel
is emphasized by defining pm,a

ξ =
�
pa

m[0]|[ξ], . . . , pa
m[qm]|[ξ]

�T
.

Then, using the VSBF channel model in Sec. 2,

pm,a
ξ =

�
νξ

�
ηv pm,a

ξ−1 + uv

��
+
�
(1 − νξ)

�
ηq pm,a

ξ−1 + uq

��
(3)

For the mth user with normalized spreading sequence
{cm[n]}N−1

n=0 , consider transmitting an accumulated burst B of
NB data symbols, with data symbols bm[k] taking values from
a 4-QAM alphabet. Then the baseband discrete-time transmitted
signal for the mth user is xm[n] =

�NB−1
k=0 bm[k]cm[n − kN ],

n = 0, · · · , NNB − 1.
Highlighting the time-varying nature of the channel, a par-

titioning in terms of fundamental bursts (similar to overlap-add
block-convolution) is performed yielding

xm,ξ[n] =

�
xm[n + ξNN

(f)
B ], 0 ≤ n ≤ NN

(f)
B − 1

0, otherwise
(4)

Then at the ath antenna, the received signal due to the ξth funda-
mental burst is ra,ξ[n] =

�M
m=1 xm,ξ[n]∗(pm,a

ξ )T , and the total
received signal due to the entire accumulated B is

ra[n] =

ρ�
ξ=0

ra,ξ[n − ξNN
(f)
B ] + va[n] (5)

where va[n] is complex additive white Gaussian noise (AWGN).
When B satisfies quasi-stationarity, the total received signal

reduces to [7]

ra[n] =

M�
m=1

NB−1�
k=0

bm[k]ga
m[n − k] + va[n] (6)

where

ga
m[k] =

N−1�
n=0

cm[n]pa
m[k − n] (7)

is the equivalent channel with spreading code. Finally, as shown
in [7], the entire spatio-temporal system also admits the following
high-level vector representation for estimating the kth symbol

rµ(k) = Gµbµ(k) + vµ(k) (8)

where µ is the smoothing factor, Gµ a matrix of channel coeffi-
cients, bµ(k) a vector of transmitted symbols and vµ(k) a vector
representing the AWGN.

5. LEAST-SQUARES INTERFERENCE SUPPRESSION

The objective of interference suppression is to jointly mitigate the
effects of ISI and multi-access interference. With the signal model
given by (8), when m is the desired user, the received signal rµ(k)
is filtered with a spatio-temporal weight vector Wm. This weight
vector is chosen to minimize the MSE cost function

JMSE(Wm) = E

����bm[k] − WH
mrµ(k)

���2	 (9)
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With the classical least squares (LS) method [2], time-averaging
approximates the ensemble average in (9) using the Nt available
training symbols, producing the following solution

Wm,LS =

�
1

Nt

Nt−1�
k=0

rµ(k)rH
µ (k)

�−1�
1

Nt

Nt−1�
k=0

b∗m[k]rµ(k)

�

= R̂−1
Nt

P̂m
Nt

(10)

6. STATIONARITY TRACKING

For a constituent Gauss-Markov channel coefficient at the ξ fun-
damental burst in the VSBF model [2]

Var(pa
m[k]|[ξ]) = η2

GMVar(pa
m[k]|[ξ−1]) + σ2

GM (11)

where ηGM and σGM assume values in their respective q-state or
v-state, depending on the channel state. Hence, depending on the
VSBF model parameters, the variance can change significantly in
the v-state, while remaining close to invariant in a q-state. In such
cases, detection of whether the channel state has changed, at the
breakpoint of two consecutive bursts, can be performed by tracking
the variances of the channel coefficients.

To enable variance tracking, a channel estimate is first ob-
tained. Assuming independence of data symbols transmitted by
different users, then the cross-correlation Pm = E

�
b∗m[k] rµ(k)

�
encapsulates the overall channel with spreading codes, from (7),
for the desired mth user since

Pm =

��
g1

m[0], · · · , gA
m[LN − 1], · · · , 0, · · · , 0

�T
, µ > L�

g1
m[0], · · · , gA

m[µN − 1]
�T

, µ ≤ L
(12)

where L is the channel support. Furthermore, Pm can be esti-
mated using training symbols to obtain P̂m

Nt
as shown in (10).

Denote the channel estimate for the ξth burst which has train-
ing symbols N

(ξ)
t (see Fig. 1) as P̂m

(ξ). Noting that each such es-
timate is a complex random vector, with ANµ i.i.d. elements, an
associated sample variance S2

ξ can be found as [5]

S2
ξ =

1

ANµ − 1

ANµ�
i=1

�����P̂m
(ξ)[i] − 1

ANµ

ANµ�
j=1

P̂m
(ξ)[j]

�����
2

. (13)

Then Neyman-Pearson hypothesis testing of the associated vari-
ance σ2

ξ is performed as follows [5, 8]. For a cluster of ξ con-
secutive fundamental bursts consecutive, with associated variances
σ2

1 , · · · , σ2
ξ , the hypothesis testing problem is

H0 : σ2
1 = · · · = σ2

ξ vs. H1 : σ2
1 �= · · · �= σ2

ξ (14)

which is the well known homoscedasticity testing problem in
ANOVA [5]. The maximum F -ratio test can be used to reduce
this multi-sample problem to a two-sample problem by consider-
ing the maximum and minimum variances σ2

max and σ2
min,

H0 : σ2
max/σ2

min = 1 vs. H1 : σ2
max/σ2

min > 1 (15)

Define the statistic
F = S2

max/S2
min (16)

then if the null hypothesis H0 is true, F has a complex F -
distribution with complex degrees of freedom n = m = ANµ−1
and probability density function [8]

fF (x) =
(n + m − 1)!

(n − 1)!(m − 1)!

xn−1

(1 + x)n+m
U(x) (17)

Hence, given a level of statistical significance specified by α [5],
the critical value Fα for decision is [5]

Prob[F > Fα] =

	 ∞

Fα

fF (x) dx = α. (18)

Then the decision is to accept H0 if F < Fα (quasi-stationarity
accepted). Otherwise accept the alternative hypothesis H1 (non-
stationarity detected).

Evidently, the above procedure allows clustering and seg-
menting received bursts to construct maximum-length accumu-
lated bursts that satisfy quasi-stationarity. The LS weight vector
Wm,LS in (10) can now be calculated and applied to each such ac-
cumulated burst created. A conceptual algorithmic description is
summarized in Table 1.

Ntotal : total number of fundamental bursts to be processed
s: starting fundamental burst of the current accumulated burst
I. Initialization: Set s = 1
II. Iteration

for i = 2, 3, · · · , Ntotal

if ( s ≤ Ntotal )
S2

min = min{S2
s , · · · , S2

i }; S2
max = max{S2

s , · · · , S2
i }

F = S2
max/S2

min

if ( F ≥ Fα )
1. Set current accumulated burst =

all fundamental bursts from s to i − 1
2. Decode the current accumulated burst
3. Reset s = i

Table 1. Stationarity tracking using ANOVA

7. SIMULATION RESULTS AND DISCUSSION

Unless otherwise indicated, the following parameters remain the
same: fundamental burst size N

(f)
B = 150, spreading factor

N = 16, SNR=15 dB, number of active users M = 8, smoothing
factor µ = 2, FIR order qm = 15. Each channel tap coefficient
was independently initialized from an identical complex Gaussian
distribution CN (0, 2). For each simulation, 80 Monte-Carlo runs
were conducted, each run corresponding to a transition sequence
of 20 fundamental bursts.

Channel I (Moderately varying VSBF channel): The follow-
ing VSBF model parameters from Sec. 2 were used: p = 0.4,
ηq = 0.95, σ2

q = 0.002, ηv = 0.7, σ2
v = 0.1. Fig. 2 shows the

MSE performance using A = 2 antennas (left) and A = 4 (right).
For each simulation, two different levels of significance specified
by α = 0.05 and α = 0.2 are applied.

The fixed-burst performance was obtained using equalization
without channel tracking, i.e., all bursts considered were funda-
mental. Also shown for reference is the pseudo-ideal burst per-
formance, obtained using perfect knowledge of the transition se-
quence for the desired user. It is not necessarily a lower bound,
e.g. if the q-state in reality corresponds to a highly varying state,
using the known transition sequence for decoding is disastrous.

For A = 2, it is seen that α = 0.05 results in faster conver-
gence. However, residual excess MSE is higher. While a smaller
α = 0.05 results in less false alarms, it has a higher chance of
missing the alternative hypothesis, i.e., Type II error is higher than
Type I error [5]. Increasing α = 0.2 increases the power of the
test [5] (ability to detect the alternative hypothesis when it occurs)
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Fig. 2. Channel I MSE performance with increasing training: (left)
A = 2; (right) A = 4.

5 10 15 20 25 30 35 40
N

t
 per fundamental burst

MSE vs N
t

Fixed burst
Variable burst (α=0.2)
Variable burst (α=0.05)
Pseudo−ideal burst

5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

N
t
 per fundamental burst

M
S

E

MSE vs N
t

Fixed burst
Variable burst (α=0.2)
Variable burst (α=0.05)
Pseudo−ideal burst

Fig. 3. Channel II MSE performance: (left) A = 2; (right) A = 4.
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Fig. 4. Channel III MSE performance: (left) SNR=15 dB; (right)
SNR=20 dB

at the cost of reducing the convergence speed. Hence the choice
of the most appropriate value for α depends on the encountered
channel.

Alternatively, the power of test can be improved by increasing
the degrees of freedom. In a spatio-temporal setting, this can be
achieved by increasing A. As seen in Fig. 2 (right) for A = 4, the
excess MSE is now less significant when using α = 0.05.

The above results also show that, using a variable-size struc-
ture, the number of training symbols per fundamental burst can
be reduced, while still attaining the same interference suppression
performance compared to the fixed-size burst. Hence, the overall
spectral efficiency can be higher when using a variable-size burst
compared to a fixed-size counterpart.

Channel II (Less varying VSBF channel): A more station-
ary scenario is next considered with VSBF parameters: p = 0.2,
ηq = 0.98, σ2

q = 0.001, ηv = 0.7, σ2
v = 0.1. Fig. 3 shows the

corresponding MSE performance for A = 2 and A = 4. In this

case, it is possible and more advantageous to utilize α = 0.05,
because the penalty for a missed detection is less severe in this
channel. And as in Channel I, spectral efficiency can be increased
when using a variable-size burst compared to a fixed-size burst.

Channel III (Highly varying VSBF channel): Finally, a
highly varying Channel III is considered: p = 0.9, ηq = 0.7,
σ2

q = 0.2, ηv = 0.1, σ2
v = 0.8. Here, the penalty for missed de-

tection is severe. To appreciate the severity of the incurred penalty,
the performance of an overvalued fixed-size burst, twice the size
of the fundamental burst, is also shown. Fig. 4 shows the result-
ing performances for A = 4, α = 0.2, with SNR=15 dB and
SNR=20 dB. Indeed, the error floor for an overvalued fixed-size
burst is large. Increasing the SNR does not improve performance,
since equalization is not successful with stationarity violation, re-
sulting in severe residual interferences and thus the error floor.
This is a convincing motivation for a variable-size burst, which can
account for such worst-case scenario, corresponding to an operat-
ing instant where the environment is highly distorting. When the
operation returns to a more benign environment, the variable-size
burst can again take advantage of longer quasi-stationarity periods
for better performance.

As shown in these scenarios, at worst (Fig. 4), there is no sig-
nificant performance loss when using a variable-size burst com-
pared to a fixed-size burst. On the other hand, there is a possibility
for increased spectral efficiency in more benign situations (Figs. 2
and 3). The added cost would be that of tracking the stationarity.

8. CONCLUDING REMARKS

In this paper we presented a strategy for constructing a variable-
size burst that adapts to the operating environment. The burst size
used for decoding is longer when the channel is more stationary,
and shorter when the channel is more varying. Obtained results
show that, compared to a fixed-size burst, a variable-size burst is
more flexible and can yield good performance, when the former
case may prove inadequate, in a wider range of operating condi-
tions.
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