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ABSTRACT

In a CDMA system, imperfect channel estimation causes perfor-
mance degradation of a minimum mean-square-error (MMSE) re-
ceiver. This paper studies effects of channel estimation error on the
performance of direct matrix inversion (DMI) MMSE receiver and
subspace MMSE receiver when channel parameters are estimated
by a covariance-matching technique based on finite data samples.
Receivers’ output signal to interference plus noise ratios (SINRs)
and bit-error-rates (BERs) are adopted for performance measures.
Those performance indicators under such an imperfect condition
are derived from a perturbation perspective and verified by simu-
lation examples.

1. INTRODUCTION

In a CDMA system, multiuser interference (MUI) is a typical ob-
stacle to be obviated. Minimum mean-square-error (MMSE) re-
ceivers can be designed to detect input signals while suppressing
MUI. However, in a wireless communication environment, chan-
nel parameters are not known a priori and need to be estimated.
Blind methods offer an increased effective data rate. Typical second-
order statistics based methods include subspace approaches [1],
[2], minimum variance or minimum output energy (MOE) meth-
ods [3], [4], power of R (POR) technique [5], etc.

Most multiuser detection and channel estimation techniques
are developed under perfect conditions first and then applied to
practical scenarios to test performance degradation and robustness.
Since various imperfectness may stem from many sources such
as background noise, finite sample size, unknown channel order,
synchronization error, user variation, etc., performance prediction
under those conditions is necessary to better evaluate individual
method. For example, sensitivity of multiuser detectors’ perfor-
mance to channel mismatch is analyzed in [6] when transmitted
signals suffer from flat fading. Subspace based multipath chan-
nel estimation errors for a multirate CDMA system are derived
for given finite number of observations [7]. In [8], perturbation
to subspace decomposition of a matrix is studied when errors are
introduced to the matrix by either noise or finite sample size.

In this paper, we analyze performance of direct matrix inver-
sion (DMI) MMSE and subspace MMSE receivers [2] when chan-
nel is imperfectly estimated by a covariance-matching technique
[9]. Each receiver’s output signal to interference plus noise ra-
tio (SINR) and bit-error-rate (BER) are adopted for performance
measures. Imperfectness from finite sample size is treated as per-
turbation whose effect is particularly studied. To achieve our goal,
statistics of sample covariance are provided in the light of [10].
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Similar to [11], they can be regarded as general results and pos-
sibly applied to analysis of other methods. Then SINR and BER
under such an imperfect condition are analyzed from a perturba-
tion perspective and verified by extensive simulations.

Notations throughout the paper are defined as follows. Denote
Hermitian - complex conjugate (·)∗ transpose (·)T by (·)H , integer
ceiling by �·�, vector 2-norm by || · || and matrix Frobenius norm
by || · ||F [12], trace by tr(·), expectation by E{·}, the ath column
of a matrix U as ua, 1a as a column vector of length a with all
elements equal to one, Ia as an identity matrix of degree a whose
bth column is denoted as ea,b, the Kronecker product as “⊗” [12],
“vec” as a vectorized operation, matrix Hadamard product “�”
to represent element wise multiplication, the Khatri-Rao product
“�” to represent column-wise Kronecker product [12]: U�W =
[u1⊗w1, u2⊗w2, · · ·]. A diagonal or block diagonal matrix with
main diagonal entries xi is denoted as diag{x1, x2, · · ·}. We also
denote a perturbation by preceding the corresponding quantity by
δ, and the perturbed quantity with .̂ For example, δR = R̂ − R.

2. DATA MODEL

Consider an uplink CDMA system with J users. User j is assigned
periodic spreading codes cj(k) of length P to spread its informa-
tion symbol wj(n) of zero-mean and unit variance. Let its chip
sequence be transmitted through a discrete-time chip-rate channel
gj(l). Then the received signal yj(n) at the chip-synchronized
receiver has a form [3]

yj(n) =

∞∑
l=−∞

wj(l)hj(n−dj − lP ), hj(n) =

∞∑
i=−∞

gj(i)cj(n− i),

(1)
where dj is the propagation delay of user j in chip periods. Af-
ter considering all J users and zero-mean additive white Gaussian
noise (AWGN) v(n) whose variance is denoted as σ2

v , the received
signal becomes y(n) =

∑J

j=1
yj(n) + v(n).

The discrete-time model can be easily formulated into a ma-
trix/vector representation. For convenience, we assume a quasi-
synchronous system with dj � P and absorb propagation delay
into the channel for each user. The maximum delay spread of all
multipath channels is q chips. If we collect ν = MP chip-rate
samples in a vector yn at the receiver, then it is given by [3]

yn =

J∑
j=1

M−1∑
m=−K

Cj,mgjwj(n + m) + vn = Hwn + vn, (2)

where K = �(q − 1)/P �, gj is the channel vector of length q,
Cj,m is the code filtering matrix of user j for symbol wj(n +
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m) which can be obtained from Cj,0 (corresponding to symbol
wj(n)) by shifting it up (if m < 0) or down (if m > 0) by |m|P
rows, H is called a signature waveform matrix

H = [H1, · · · , HJ ], H j = [Cj,−Kgj , · · · , Cj,M−1gj ], (3)

wn contains all L = J(M + K) inputs, vn is the noise com-
ponent. Without loss of generality, assume w1(n) is to be de-
tected at time n. Its signature vector is hK+1 = C1,0g1. Struc-
tures of users’ signature waveforms have been exploited to esti-
mate all channel vectors blindly by a covariance-matching tech-
nique [9] under assumptions that all spreading codes and the max-
imum channel delay spread are known.

3. COVARIANCE-MATCHING CHANNEL ESTIMATION
AND LINEAR DETECTION

Covariance-matching technique is based on the covariance of yn

R =

J∑
j=1

M−1∑
m=−K

Cj,mGjC
H
j,m + σ2

vIν (4)

where Gj = gjg
H
j . Define αj = tr(Gj) = ||gj ||

2. It is ob-
served that R is parameterized by Gj . If it is matched with its
estimate from N data vectors

R̂ =
1

N

N∑
n=1

yny
H
n , (5)

and the resulting error ||R − R̂||2F is minimized, Gj can be es-
timated. Define r = vec(R), r̂ = vec(R̂), xj = vec(Gj),
and x = [xT

1 , · · · , xT
J , σ2

v ]T . Noticing ||A||2F = ||vec(A)||2, the
criterion can be described as follows [9]

x̂ = arg min ||r − r̂||2 = arg min ||Sx − r̂||2 (6)

where

S = [S1, · · · , SJ , vec(Iν)], Sj =

M−1∑
m=−K

C
∗
j,m ⊗ Cj,m. (7)

Under some identifiability conditions [9], the solution to (6) be-
comes

x̂ = Qr̂, Q = (SH
S)−1

S
H , (8)

Once x is estimated, xj can be extracted. Then Gj is recon-
structed by the reverse vec operation. These operations can be
described by

Ĝj = [Aj,1r̂, · · · , Aj,qr̂] (9)

where

Aj,i = (eT
q,i ⊗ Iq)[e

T
J,j ⊗ Iq2 , 0q2×1]q2×(Jq2+1)(S

H
S)−1

S
H

for i = 1, · · · , q, j = 1, · · · , J . If singular value decomposi-
tion is performed on Gj , then the maximum singular value is
αj = ||gj ||

2 and corresponding singular vector becomes the chan-

nel vector up to a scalar ambiguity. Therefore, once Ĝj is ob-
tained, channel vector gj can be estimated by finding the max-

imum singular vector of Ĝj and scaling the vector by
√

α̂j to
adjust its norm.

The estimated channel vector ĝ1 can be used for design of
DMI MMSE and subspace MMSE receivers. The DMI MMSE
receiver can be defined from direct inversion of R as

f mmse,dmi = R
−1

C1,0g1. (10)

The MMSE receiver can also be expressed in terms of the subspace
components of R. Let the eigenvalue decomposition of R be

R = U sΛsU
H
s + UnΛnU

H
n , (11)

where Λs = diag{λ2
1, . . . , λ2

ξ}, Λn = σ2
vI , U s and Un rep-

resent the signal and noise subspaces respectively. Invoking the
orthogonality between Un and C1,0g1, the subspace MMSE re-
ceiver takes the following form [2]

fmmse,sub = U sΛ
−1
s U

H
s C1,0g1. (12)

It can be observed that these receivers are coupled with chan-
nel vectors. Their performance will be investigated jointly with the
channel estimator next.

4. PERFORMANCE STUDY

Performance loss is incurred to receivers when finite received data
samples are processed as (5). Assume N is sufficiently large such
that perturbation technique is applicable [8]. Performance of the
channel estimator is required to evaluate each receiver’s perfor-
mance and is thus studied first. We will propose more compact
results than those in [9] based on the property of cumulant.

4.1. Channel Estimation Performance

All perturbations are due to an estimation error for R or equiva-
lently r. If r̂ has an estimation error δr = r̂ − r due to finite N ,
then from (9), Gj is perturbed by δGj as

δGj = [Aj,1δr, · · · , Aj,qδr]. (13)

Then the first-order perturbation in its maximum singular vector
becomes [8]

δgj ≈
1

αj

Π
⊥
gj

δGjgj , Π
⊥
gj

= ΣjΣ
H
j (14)

where Σj is in size of q× (q−1) and spans a (q−1)-dimensional
subspace orthogonal to gj . Substituting (13) into (14), we obtain

δgj ≈ Γjδr, Γj =
1

αj

Π
⊥
g

j

q∑
i=1

gj(i)Aj,i. (15)

The auto-covariance of channel estimate thus becomes

Cov(δgj, δgj) = E{δgjδg
H
j } ≈ ΓjΦ(r̂)ΓH

j , (16)

where Φ(r̂) = E{δrδrH} is the covariance of r̂. It depends on
data model (2), covariance estimation method (5) and up to the
fourth-order statistics of channel inputs and noise. We will present
general results in the light of [10] whose results for complex sym-
metric sources are extended to both a real system and a complex
system here. The following properties of “vec”, “⊗” and “�” have
found to be useful [12]

vec(ABC) = (CT ⊗ A)vec(B), (17)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (18)

(A ⊗ B)(C�D) = (AC)�(BD). (19)

Although (5) does not require independence of different data vec-
tors, they are assumed independent for convenience of analysis.
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Proposition: If channel model follows (2) with ν outputs and
L inputs with same distribution and fourth-order cumulant κ4w ,
and data covariance is estimated from N independent data vectors
as (5), then for a real system, Φ(r̂) is given by

NΦ(r̂) = κ4w(H�H)(H�H)T + R ⊗ R + A � A
T , (20)

A = [(Iν ⊗ 1ν)R(1T
ν ⊗ Iν)]

while for a complex system it has a form

NΦ(r̂) = κ4w(H∗
�H)(H∗

�H)H + R
∗ ⊗ R. (21)

Proof: It is omitted due to limited space. See [13] for details. �

4.2. Performance of Receivers

Perturbation in channel estimation induced by finite data samples
inevitably causes each receiver perturbed to be f̂ = f + δf ,
where the first-order perturbation in δf can be assumed to have
zero mean due to zero-mean of δR. According to (2), perturbed
SINR has the following form

ŜINR =
fHR1f + E{δfHR1δf}

f HRintf + E{δfHRintδf}
(22)

where R1 = C1,0g1g
H
1 CH

1,0 and Rint = R − R1. Then BER
can be evaluated by assuming Gaussian interference [14]

B̂ER ≈ Q(
√

ŜINR ) (23)

where Q(x) = 1√
2π

∫ ∞
x

e
−t2

2 dt. According to (22), the SINR de-
pends on both unperturbed terms (signal power, interference plus
noise power) and corresponding perturbations. Perturbations fol-
low a typical form of Ψ(X) = E{δfHXδf}, where X can be
replaced by R1 or Rint. Since different receivers take different
forms with correspondingly different δf , evaluation of Ψ(X) will
be discussed for each receiver respectively. For shorter notations,
receivers’ subscripts are dropped later and simply denoted by f .
However, no confusion will be caused in the context.

4.2.1. DMI MMSE Receiver

Replacing R in (10) by R + δR and considering channel estima-
tion error, we obtain the first-order perturbation

δf ≈ R
−1

C1,0δg1 − R
−1δRR

−1
C1,0g1. (24)

Substituting (15) into (24), δf is related to perturbation in covari-
ance estimation by

δf ≈ R
−1

C1,0Γ1δr − R
−1δRR

−1
C1,0g1. (25)

Then perturbation of signal/noise power Ψ(X) is given by

Ψ(X) ≈ tr(E{δrδrH}ΓH
1 C

H
1,0R

−1
XR

−1
C1,0Γ1)

+ g
H
1 C

H
1,0R

−1E{δRR
−1

XR
−1δR}R−1

C1,0g1

− g
H
1 C

H
1,0R

−1E{δRR
−1

XR
−1

C1,0Γ1δr}

− E{δrH
Γ

H
1 C

H
1,0R

−1
XR

−1δR}R−1
C1,0g1 (26)

Those underlined terms are required for evaluation of Ψ(X). The
first term can be easily obtained from Proposition. The second
term has been derived in [7] in a general form E{δRZδR} where
Z is an arbitrary deterministic matrix. The third underlined term
E{δRZδr} can be easily related to a form E{δRZ̃δR} after
noticing δr = vec(δR). Therefore, all of them can be evaluated
from given system parameters.

4.2.2. Subspace MMSE Receiver

According to (12) and expanding (Λs + δΛs)
−1, we obtain

δf ≈ δU sΛ
−1
s U

H
s C1,0g1 − U sΛ

−1
s δΛsΛ

−1
s U

H
s C1,0g1

+ U sΛ
−1
s δUH

s C1,0g1 + U sΛ
−1
s U

H
s C1,0δg1. (27)

Perturbation δR or δr causes not only estimated channel vector
perturbed, but also subspace components of R perturbed [8]

δU s ≈ UnU
H
n δRU sΩ

−1, δUn ≈ −U sΩ
−1

U
H
s δRUn,

δΛs ≈ U
H
s δRU s, δΛn ≈ U

H
n δRUn, (28)

where Ω = Λs − σ2
vI , and approximation is valid up to the first

order of δR. Since UH
n C1,0g1 = 0, substituting (28) in (27) and

invoking (15), we obtain

δf ≈ BnδRBγC1,0g1 − BsδRBsC1,0g1 + BsC1,0Γ1δr
(29)

where for convenience we have defined

Bn
∆
= UnU

H
n , Bs

∆
= U sΛ

−1
s U

H
s , Bγ

∆
= U s(ΩΛs)

−1
U

H
s .

Then Ψ(X) can be expressed in terms of statistics of the covari-
ance estimation error

Ψ(X) ≈ g
H
1 C

H
1,0BγE{δRBnXBnδR}BγC1,0g1

− g
H
1 C

H
1,0BγE{δRBnXBsδR}BsC1,0g1

+ g
H
1 C

H
1,0BγE{δRBnXBsC1,0Γ1δr}

− g
H
1 C

H
1,0BsE{δRBsXBnδR}BγC1,0g1

+ g
H
1 C

H
1,0BsE{δRBsXBsδR}BsC1,0g1

− g
H
1 C

H
1,0BsE{δRBsXBsC1,0Γ1δr}

+ E{δrH
Γ

H
1 C

H
1,0BsXBnδR}BγC1,0g1

− E{δrH
Γ

H
1 C

H
1,0BsXBsδR}BsC1,0g1

+ tr(E{δrδrH}ΓH
1 C

H
1,0BsXBsC1,0Γ1). (30)

Each underlined term in (30) can be evaluated similarly as before.

5. SIMULATION EXAMPLES

Since channel estimation MSEs have been well studied in [9], we
only show SINRs and BERs of each receiver averaged over 100
independent realizations. We assume J = 8, Gold sequences of
P = 31, and Gaussian random channels of length 5 chips. Fig.
1 presents effect of N when SNR = 10dB. Dashed-dotted lines
are based on ideal receivers (N = ∞), dashed lines represent an-
alytical results obtained according to (22) or (23) and solid lines
stand for experimental results. Analytical results agree well with
experimental ones for relatively large N , say 1000. However, the
DMI MMSE receiver has slower convergence than the subspace
MMSE receiver because it is more sensitive to the estimation er-
ror in the data covariance due to matrix inversion. Effect of noise
is tested when N = 500 with results presented in Fig. 2. Per-
formance changes differently for different receivers. The DMI
MMSE receiver (with finite N ) does not improve with increased
SNR monotonically, due to the same reason as before. Also the
error between the analytical and experimental results turns out to
be larger. The subspace MMSE receiver performs satisfactorily. It
is close to the ideal MMSE receiver. The sensitivity to noise and
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sample size can be further observed from Fig. 3. Dashed line in
each subplot represents performance of the ideal MMSE receiver
associated with N = ∞ while other six solid lines correspond to
N = 50, 150, 300, 500, 1000, 2000 sequentially. Only marks
N = 50 and N = 150 are made for clear representation. The
SINR peaks for the DMI MMSE receiver are clearly observed for
small to moderate N . They shift to high SNR regions as N in-
creases. As N → ∞, peak disappears and the solid line converges
to the dashed one. However, the SINR of the subspace MMSE re-
ceiver almost shows no peak for all N . It converges to the ideal
one much faster than that of the DMI MMSE receiver. Similar
conclusions can be made for BER results.
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