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ABSTRACT

In this paper, the advantages of the spatial diversity are investigated
with respect to two metrics, i.e., near-far resistance and rank of the
channel matrix. The impact of spatial diversity on the rank of the
channel matrix and its significance is first studied. Then the near-
far resistance of the minimum mean square error (MMSE) detec-
tor is derived for wireless code division multiple access (CDMA)
communication systems with spatial diversity. The derived near-far
resistance under different transmit-receive antenna configurations is
analyzed and compared. It is shown that near-far resistance is en-
hanced when spatial diversity is introduced.

1. INTRODUCTION
Throughout the history of wireless communications, spatial antenna
diversity has been important in improving the radio link between
wireless users. In this paper, the advantages of the spatial diversity
are investigated according to the near-far resistance and the rank
of the channel matrix. It was recently shown that the full column
rank condition of the channel matrix could be violated in the single
antenna CDMA systems [1]. In this paper, we show that the full
column rank assumption could also be violated in CDMA systems
with receiver antenna arrays but with a much smaller probability
compared with single antenna systems.

On the other hand, the near-far resistance is by all means one
of the most important performance measures for a CDMA detector.
In this paper the near-far resistance of the MMSE detector is also
derived for wireless CDMA communication systems with spatial
diversity. The near-far resistance under different transmit-receive
antenna settings is also analyzed and compared. It is shown that
near-far resistance is enhanced when spatial diversity is introduced.

2. SIGNAL MODEL
Consider a CDMA system with

�
active users and a � -element an-

tenna array in the receiver. The � � � user’s spreading code is denoted
by � 	 � 
 � 	 � � � � � � � � � 	 � � �  " � % ' . Then, the � � � user’s transmit-
ted signal at the chip rate in a baseband discrete-time model repre-
sentation is given by ( 	 � ) � � - . 0 	 � 2 � � 	 � )  2 � � � , where 0 	 � 2 �
is the � � � user’s 2 � � symbol at the symbol rate " 8 9 ; , � 	 � ) � and( 	 � ) � are at the chip rate " 8 9 � . In the presence of a linear mul-
tipath channel where the receiver collects one sample per chip, the
received discrete-time sampled signal from user � on the > � � antenna
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is @ A	 � ) � � - C - E 0 	 � G � � 	 � I  G � � � L A	 � )  I  P A	 � , where L A	 � � �
is the effective channel impulse response between the � � � user and
the > � � receiver antenna which is sampled at the chip interval, andP A	 is the transmission delay (mod � � ) of user � seen at the > � � an-
tenna in chip periods. It is straightforward to show that the above
equation is equivalent to @ A	 � ) � � - E 0 	 � G � � A	 � )  G � �  P A	 � , where

� A	 � ) � U� V W X Z-E [ \ � 	 � G � L A	 � )  G � . The total received signal at the > � �
antenna at the chip rate is the superposition of contributions of all

users as @ A � ) � � _-	 [ Z @ A	 � ) � . Stack up � � samples of @ A � ) � into

` A � 2 � U� b @ A � 2 � � � � � � � � @ A � 2 � � d � �  " � % ' to obtain, at the sym-
bol rate, the signal model

` A � 2 � � _f
	 [ Z

V g X Zf E [ \ 0 	 � 2  G �
jk
l � A	 � G � �  P A	 �

...� A	 � G � � d � �  "  P A	 �
n o
p

� _f
	 [ Z

V g X Zf E [ \ 0 	 � 2  G � q A	 � G � � V r X Zf E [ \ t A � G � uv � 2  G � (1)

where � 	 is the length of the � � � user’s channel impulse response

and is related to the length of L A	 � ) � and the delay P A	 . � w U� y { |Z } 	 } _ � 	 ,

q A	 � G � U� 
 � A	 � G � �  P A	 � � � � � � � A	 � G � � d � �  "  P A	 � % ' , t A � G � U�b q A Z � G � � � � � � q A _ � G � � , uv � G � U� 
 0 Z � G � � � � � � 0 _ � G � % ' . Let ` � � 2 � �b ` Z � � 2 � � � � ` � � � 2 � � . By stacking up � successive ` � 2 �
vectors of the received data, the discrete time signal model for the
dispersive CDMA channel observed in additive white Gaussian noise
can be represented as follows� � 2 � � � v � 2 � d � � 2 � (2)

where
� � 2 � U� b ` � � 2 � � � � � � ` � � 2 d �  " � � ,

� �
j
l t � � w  " � � � � t � � � � � � �

...
. . .

. . .
...� � � � t � � w  " � � � � t � � �

n
p , t � G � �


 t Z � � G � � � � � � t � � � G � % � ,
v � � 2 � � 
 uv � � 2  � w d " � � � � � � uv � � 2d �  " � % and � � 2 � the noise vector and defined in a manner similar

to
� � 2 � . The dimension of the matrix � is � � � � � � � � d

IV - 9650-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



� � � � � . Since the channel effect on received energy can always
be incorporated into a diagonal amplitude matrix � , without loss of
generality, we assume the columns of the channel matrix � are all
normalized in the following sections. Then (2) can be rewritten as

� 	 � � � � � � 	 � � � � 	 � � (3)

3. RANK OF CHANNEL MATRIX FOR SINGLE AND
MULTIPLE RECEIVER ANTENNA

The full column rank assumption of the channel matrix � is essen-
tial in many second order statistics (SOS) based blind identification
and equalization algorithms such as the subspace method [6] and
the linear prediction method [7]. Therefore, it is interesting to in-
vestigate how the receive antenna arrays may affect the rank of the
channel matrix. It has recently been shown that the full column
rank assumption of � could be violated in single antenna CDMA
systems [1]. There is a trivial case and other non-trivial cases con-
sidered in [1]. The trivial case is, if some user channels have short
delay spread � � � � � , then � 	 � � contains zero columns for � � � � .
However, since these zero columns have no impact on the received
signal vector � � 	 � � (one can always delete those zero columns to
form a narrower channel matrix) [1], in the following, we assume
that there is no zero column in � and consider only the non-trivial
cases. We have the following proposition.

Proposition 1 Let � � represent the channel matrix in a CDMA
system with a single receiver antenna, i.e., � � � . Assume that
the probability for columns of � � to be linearly dependent is 	 � .
The probability 	 �

for columns of the channel matrix � to be lin-
early dependent for CDMA systems with multiple receiver antennas
is 	 � � 	 � 	 �� , where 	 � is the probability for having the same lin-
ear dependence in columns of � � for all antennas across the array.

Proof: The channel matrix � can be divided into  � � � � �
block columns from left to right, each block having

# $ columns.
Due to the Toeplitz structure of the channel matrix, it is straight-
forward to show that linear dependence can only occur within each
block of

#
columns of � , and can not occur among different blocks

due to the existence of the zero rows. It has been shown in [1]
that in single receiver antenna CDMA systems, the channel matrix

� � can be rank deficient, which is a special case of � in (3) when
� � � . Without loss of generality, we assume that the probability
for columns of � � to be linearly dependent is 	 � for single receiver
antenna CDMA systems ( � � � ). By carefully examining the struc-
ture of � 	 � � , in CDMA with receiver antenna arrays ( � � � ), the
columns of � to be linearly dependent requires satisfaction of both
of the following two conditions. 1) on each � ' ) antenna element,

the columns � *� +� , - . / 1 * .� 	 2 � / 6 6 6 / 1 * .� 	 � � � � � / - . : . (existence

of the zero entries and the number of 1 *; 	 � � vectors may vary regard-
ing different blocks of columns under consideration), < � � / 6 6 6 / #

,
should be linearly dependent (with probability 	 � ); and 2) the same
linear relationship should be satisfied among different antenna el-

ements (denote this probability to be 	 � ). E.g., if

?
@� A � B � � �� � - ,

then

?
@� A � B � � *� � - / � � �� � , where B � are constants. Therefore, in

CDMA systems with receiver antenna arrays, the probability for the
columns in � to be linearly dependent is 	 � � 	 � 	 �� . It is obvious
that 	 � � 	 � 	 �� � 	 � . The equality holds in single antenna CDMA
systems (i.e., � � � and 	 � � � ). In most cases, 	 � � � 	 � .

This Proposition implies that, for CDMA with receiver antenna
arrays, the probability for � to be rank deficient is much lower than

that of in single receiver antenna CDMA systems. Furthermore, one
can see that this probability decreases exponentially when the num-
ber of antenna elements increases. This phenomena is not surprising
since more spatial diversity is exploited when antenna elements in-
crease. Finally, it is straightforward to see that, when the number
of columns in the channel matrix (i.e., system load) increases, the
probability that the channel matrix is rank deficient also increases in
both CDMA systems with single receiver antenna and with receiver
antenna arrays (both systems have the same number of columns in
their channel matrix). These results indicate that it is much safer to
use the SOS based blind detection and equalization algorithms on
receivers with multiple antennas than a single antenna.

4. NEAR-FAR RESISTANCE OF MMSE DETECTOR IN
CDMA WITH RECEIVER ANTENNA ARRAY

Without loss of generality, we assume that the D ' ) symbol in
� 	 � � is

the desired transmitted symbol of the desired user and simply denote
it by F � 	 � � . � � is the D ' ) column in � corresponding to the desired
transmitted symbol F � 	 � � . Let � denote the subspace spanned by
interference channel vectors �

; / H �� D , where �
;
denotes the H ' )

column in � . It is easy to show that � 	 �� � � � , where � 	 6 � repre-
sents the column subspace and �� is the matrix obtained by deleting
the D ' ) column � � from � . We have the following proposition.

Proposition 2 The near-far resistance of the MMSE detector is L� � ��
	 ! # ! � % & ( ) ( + , where “+” represents Moore-Penrose pseudoinverse,

and the subscript 	 D / D � denotes choosing the element at the D ' ) row
and the D ' ) column.

Brief Proof: Denote , +� � N � , - � +� �� N �� and . � +� �� N � � .
Note that , is singular if � is rank deficient. The definition of the
near-far resistance of the MMSE detector is presented in [2] based
on a geometric point of view. That is the near-far resistance of the
MMSE detector is equal to square norm of the projection of � � onto
the orthogonal complement of the space � (Note that � � and the
columns in � should be all normalized [2].). The above statement
can be written in the mathematical expression as

L� � �
//// 0 2

� �� 4 �� N �� 5 O �� N 7 � � //// 9
� � N� 0 2

� �� 4 �� N �� 5 O �� N 7 � �
� � � � N� �� 4 �� N �� 5 O �� N � � � � � . N� - O� . � (4)

where 	 6 � O
denotes the generalized inverse. In (4) we have used the

facts that the projection matrix

2
� �� 4 �� N �� 5 O �� N

is idempo-

tent and � � is normalized.
Since in literature the expression of the near-far resistance is

usually expressed in the form of the crosscorrelation matrix of the
signature vector [3] which in our case is , , in order to facilitate
comparison with existing work, we need to express (4) in terms of, . By adopting the properties of elementary matrix and the gener-
alized inverse, we can showA � N � B OC � E � G � �

� � . N� - O� . � (5)

Refer to [4] for a proof due to lack of space here. Then, based on
(4) and (5), we obtain the near-far resistance of the MMSE detector

L� � � �
	 � N � � OC � E � G (6)
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Generally speaking, the generalized inverse is not unique. However,

it is shown in [5] (pp. 166), the projection matrix

�
� �� � �� � �� � � �� �

is invariant to the choice of the generalized inverse � �� � �� � �
. This

means that (4) and thus the near-far resistance in (6) is unique.
Therefore, we can choose the widely used Moore-Penrose pseu-
doinverse (one special case of the generalized inverse), which is
unique, to replace the generalized inverse in (6). Then Proposition 2
is proved. Note that when � is of full column rank, matrix � � � is
non-singular. It is straightforward to show that the above derivations
are still valid and the Moore-Penrose generalized inverse becomes
the conventional inverse. Note that (6) is a generalization of the
corresponding result in [3] to multipath channels, singular crosscor-
relation matrix � � � , and receiver antenna array scenario.

5. NEAR-FAR RESISTANCE COMPARISON AMONG
TRANSMIT/RECEIVE ANTENNA SETTINGS

We now use the results derived in the last section to demonstrate
the advantages of spatial diversity on near-far resistance. One of
the most promising techniques to achieve higher data rates is space-
time (ST) coding which adopts not only multiple receive antennas
but also multiple antennas at the transmitter. A simple space-time
block coding (STBC) scheme developed by Alamouti [8] has been
adopted in several wireless standards such as wideband CDMA (W-
CDMA) and CDMA-2000. In this section, we will compare the
near-far resistance of the MMSE detector under different antenna
configurations. We focus on four different scenarios. 1) one trans-
mitter antenna, one receiver antenna (uncoded); 2) one transmitter
antenna, two receiver antennas (uncoded); 3) two transmitter anten-
nas, one receiver antennas (ST coded); 4) two transmitter antennas,
two receiver antennas (ST coded). It is assumed that the Alamouti
STBC is employed in systems with two transmitter antennas.

The signal model for scenarios 3 and 4 is derived in [9] which
turns out to have the same form as (3). From the derivation of Propo-
sition 2, it is straightforward to find that the near-far resistance of the
MMSE detector of scenarios 3 and 4 should also have the same form
as (6) by substituting � with the corresponding channel matrix for
scenarios 3 and 4 (Actually, the results of Proposition 2 is valid for
any CDMA system as long as its signal model is of the same form
as (3)).

In order to facilitate fair comparison among different scenarios,
we make the following assumption. � � � � the processing gain � 	 ,
the system load



, the smoothing factor � , the distributions of mul-

tipath delay spread and asynchronous user delay are the same under
different scenarios. Since the dimension of the channel matrix will
prove to be useful for our following derivations, we now specify
those parameters. Let � � 
 � � � 
 � � � 
 � 
 denote the channel matrix
corresponding to the above four scenarios. Under � � � , the dimen-
sions of the channel matrix under scenarios 1 through 4 are � 	 �
 � � � � �� � � � , 
 � 	 � 
 � � � � �� � � � , 
 � 	 � 
 
 � � � �

� �  

�
� �

and � � 	 � 
 
 � � � �
� �  

�
� � , respectively [7][9], where �

�
� (non-

negative integer) is related to the maximum multipath delay spread
and the maximum asynchronous user delay of the � # % scenario, and
is defined as in (2.11)

�
of [7] and in (132) of [9], respectively.

Furthermore, since the channels and asynchronous transmission
delays are random in nature, it is more meaningful to compare the
statistical average of the near-far resistance rather than a particu-
lar random realization. To this end, we need an additional assump-
tion. � � � � Under the � # % scenario, assume &

�� (the vector in � �
�
There is a notation error (i.e., the floor operation should be replaced by

the ceiling operation ) in (2.11) of [7].

which is corresponding to the desired transmitted symbol of the de-
sired user) is a random vector with a probability density function� 	 � ( � � �

� � � � 
 �
� � �

� � � � �
� � �

� � � � � and is statistically independent of
the interference subspace � (Since it won’t affect the derivation, here� is a general expression which includes all 4 scenarios.), where

� 	
represents the complex normal distribution,  " $ � � � � denotes the
number of rows in � �

, ( � � �
� � � � represents the  " $ � � � � � � zero

vector, and

�
� � �

� � � � represents the  " $ � � � � �  " $ � � � � identity
matrix. The fact that the variance is � +  " $ � � � � is because &

�� is
normalized.

In Proposition 1, we have shown that the probability for rank of
the channel matrix under spatial diversity to be deficient is very low.
Therefore, in the following we assume � � & � the channel matrix

� � 
 � � � 
 � � � 
 � is of full column rank. We have the following
proposition.

Proposition 3 Denote / /	 �� , � � � 
 � � � 
 � , as the expectation of the
near-far resistance of the MMSE detector under the � # % scenario.
Then under � � � , � � � and � � & for each and every above scenar-
ios, we have 1) / /	 *� 
 / /	 �� ; 2) If �

�
� , 
 
 � � . 
 � 
 then / /	 �� 
 / /	 *� ,

/ /	 �� 
 / /	 0� ; otherwise / /	 �� 2 / /	 *� , / /	 �� 2 / /	 0� . Based on 1 and 2, we have
/ /	 �� � / /	 *� 
 / /	 �� � / /	 0� .

Proof: Under � � � , starting from (4) and adopting the similar deriva-
tions in [3], the conditional expectation of /	 �� , conditioning on the
interference subspace � , is then given by

4 3 /	 �� 6 � 4 � � � 4 3 � �
�� � 
 �� � � � � �� 6 � 4 � � � 4 3 #  9 � �

�� � 
 �� � � � � �� : 6 � 4
� � � 4 3 #  9 � �� � �

�� � 
 �� � � � : 6 � 4
� � � 4 3 #  9 �� �� &

�� &
�

�� �� � � 
 �� � � � : 6 � 4
� � � 4 3 #  9 &

�� &
�

�� �� � � 
 �� � � � �� �� : 6 � 4
� � � #  9 4 3 &

�� &
�

�� 6 � 4 �� � � 
 �� � � � �� �� :
� � � �

 " $ � � � � #  9 �� �� �� � � 
 �� � � � :

� � � �
 " $ � � � � #  9 
 �� � 
 �� � � � : � � � ; " < � � � � � �

 " $ � � � � (7)

where #  � � � represents the trace of a matrix, �� �
, � �� and 
 �� are de-

fined similarly as in section 4 for the � # % scenario. The sixth equality
is based on the property of conditional expectation and the seventh
equality is based on the fact that

4 3 &
�� &

�
�� 6 � 4 � 4 3 &

�� &
�

�� 4 ��
� � �

� � � � �
due to � � � . Note (7) is an extension from the simi-

lar result shown in [3] under AWGN channel case for DS-CDMA.
However, in order to obtain (7) in the asynchronous multipath chan-
nel case, in � � � we assume a much more restrictive assumption
( &

�� and vectors in � are the combination of multipath channel and
spreading code while in [3] the statistical independence assumption
is only between different spreading codes). Based on (7) and � � � ,
it is straightforward to show that

4 3 /	 �� 6 � 4 � � �

 � � � � �� � � � � �

� � 	 (8)

4 3 /	 �� 6 � 4 � � �

 � � � � �� � � � � �


 � � 	 (9)

4 3 /	 *� 6 � 4 � � � 
 
 � � � �
� �  

�
� � � �


 � � 	 (10)

4 3 /	 0� 6 � 4 � � � 
 
 � � � �
� �  

�
� � � �

� � � 	 (11)
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Under � � � ,
�
, � , � � , the maximum multipath delay spread and

the maximum asynchronous user delay are the same under different
scenarios for each realization of � (these parameters in general may
be different from one realization of � to another). By carefully ex-
amining (2.11) and (9), (2.17) and (12) of [7] and [9] respectively,
it is straightforward to show that � �� � � �� � � � � � � � � � � � �
for each realization of � . Since

� 
 � � � �� 
 � � � � � � � � � � �
� � � � � � �

� � �

�
	

for each realization of � where we have used the
fact that � � �

� �

�
�

when � is non-negative integer, by comparing
(9) and (10), we have


 � �� �� � � � � 
 � ��
�� � � � for each realization of� .

When �
�
� 
 � � � � � � � � by comparing (8) and (10), (9) and

(11), we obtain

 � �� �� � � � � 
 � �� �� � � � and


 � ��
�� � � � � 
 � �� �� � � �

for each realization of � , where we have used the fact that
� �

�
� 


�  
 � � � � � 
 �  �
when � 
 � is an integer. When �

�
� �

" � � � � � � � � � 
 � �� �� � � � 
 
 � �� �� � � � � �  
 � � � � � and

 � ��

�� � � � 

 � �� �� � � � � �  
 � � � � � for each realization of � . Since �  
 � � � � �
and �  
 � � � � � are negligible for values of � and � in practical
systems,


 � �� �� � � � � 
 � �� �� � � � and

 � ��

�� � � � � 
 � �� �� � � � for each
realization of � .

Since � �� �
� � 
 � � 
 � �� �

� � � � � � � � � � / / / � � , the claims in Proposi-
tion 3 are proven.

Remarks: 1) Transmitter and receiver diversity does have bene-
fits on near-far resistance compared with systems without those di-
versity (i.e., � �� �� � � �� �� , � �� �� � � ��

�� ). Furthermore, receiver diversity
has more impact on the near-far resistance (i.e., � �� �� � � ��

�� ). 2) Al-
though Proposition 3 are derived based on Alamouti STBC for up to
two-transmit/receive antenna configurations, these results can be ex-
tended to any STBC for any transmit/receive antenna configurations
as long as the signal model has the same form as in (3).

6. SIMULATIONS
In this section, simulations are conducted to verify the theoretical
findings. Gold sequence of length � � is employed as user spreading
sequences. The multipath channels for each user and each transmit-
receive pair have � � paths with a total delay spread (including the
user transmission delay) of two symbol durations, and all multipaths
have mutually independent delays uniformly distributed over two
symbol intervals. All � � multipath amplitudes are mutually inde-
pendent, complex Gaussain with zero-mean and unit variance. The
spreading sequences and multipath channels for each user are ran-
domly generated in each of the Monte Carlo run (i.e., they are dif-
ferent in different runs).

Example 1: Rank of the channel matrix
In this simulation, we investigate how spatial diversity may affect
the probability for channel matrix to be column rank deficient. � � �

� � and � � � � � . System load varies from 
 users to � " users.
The smoothing factor is 
 . � 2 and � 3

are calculated after averag-
ing over � " " " " " Monte Carlo runs. The user channels, spreading
codes, asynchronous delays were randomly generated in each of the

� " " " " " Monte Carlo runs. Zero columns are excluded from calcu-
lating � 2 and � 3

. The simulation results are presented in Table � .
From the table, it can be seen that the probability for 4 to be rank
deficient decreases rapidly when the number of receiver antennae
increases. Furthermore, the probability for 4 to be rank deficient
increases when the system load increases. It is worth to point out
that, from Table 1, we can find that most of the SOS blind iden-
tification and equalization algorithms such as the subspace method
may fail with high probability under single receiver antenna CDMA
systems. However, those SOS algorithms are much safer to use in

J=5 J=10 J=15 J=20
P=1 0.0107 0.0528 0.1428 0.3002
P=2 0.00003 0.00021 0.00087 0.0014
P=4 � � " 5 � � � " 5 � � � " 5 � � � " 5 �

Table 1. Probability for channel matrix (after deleting all zero
columns) to be column rank deficient under different number of re-
ceiver antennas and system load

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Load

N
ea

r−
fa

r R
es

is
ta

nc
e

2X2
1X1
1X2
2X1

Fig. 1. Near-far Resistance Comparison Among Different trans-
mit/receive antenna Settings.

CDMA systems with receiver antenna arrays even the number of
receiver antenna is 2.

Example 2: Near-far resistance comparison among different an-
tenna configurations
In this simulation, we compare the theoretical near-far resistance of
MMSE detector among different space-time settings. � � � � 
 and

� � � � . The smoothing factor � � � . All near-far resistances are
calculated by averaging 2000 Monte Carlo runs. The result is pre-
sented in Fig. 1. It can be seen from Fig. 1 that the simulation result
has a good agreement with the theoretical findings in Proposition 3.
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