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ABSTRACT

We consider chaotic spread spectrum (DS/SS) systems for
secure communication over fading channels, whereby a sym-
bol stream is linearly modulated on a spreading sequence
generated by iterating an initial condition through a suitably
chosen chaotic map. For a class of these systems we develop
methods for quantifying the uncoded probability of error
(Pr(ε)) of unintended receivers that do not know the initial
condition. We show that the Pr(ε) of unintended receivers
exploiting K degrees of diversity decays as 1/

√
SNR, in con-

trast to the intended receiver Pr(ε) that decays as 1/(SNR)K ,
demonstrating that these systems can provide reliable and
private communication over fading channels.

1. INTRODUCTION

In this paper we evaluate the privacy potential of a class of
chaotic DS/SS systems for communication over Rayleigh
fading channels. We consider linear modulation schemes on
spreading sequences arising from a class of one-dimensional
(1D) piecewise-linear chaotic maps, and investigate how di-
versity techniques affect the relative Pr(ε) performance ad-
vantages these systems provide to intended receivers over
unintended ones. For the systems considered, we establish a
lower bound on the asymptotic decaying rate of unintended
receiver Pr(ε) vs. SNR and develop metrics that predict the
Pr(ε). Based on this analysis, we then show that unintended
receivers cannot fully exploit available degrees of diversity.

CDMA systems with spreading sequences generated via
1D chaotic maps have received attention in recent years.
These systems were found to possess attractive cochannel
interference characteristics and intended user performance
[1, 2]. As shown in [3], many of these systems can provide
privacy at the physical layer, arising from the combined ef-
fect of channel distortion and the sensitive dependence on
initial conditions of chaotic sequences. The privacy benefits
are in the form of Pr(ε) performance advantages granted to
intended receivers over their unintended counterparts that
do not know the seed used to generate the chaotic spread-
ing sequence. In particular, sequences of chaotic DS/SS
systems were constructed that yield monotonically increas-
ing unintended receiver Pr(ε) while preserving the intended
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Fig. 1. Block diagram of a chaotic DS/SS modulator.

user Pr(ε). For these systems, the unintended receiver Pr(ε)
over AWGN channels decays at a rate of 1/

√
SNR at high

SNR, in sharp contrast to the exponential decay rate exhib-
ited by the intended receiver Pr(ε) [3].

In this paper we quantify the Pr(ε) advantages the chaotic
DS/SS systems in [3] provide to intended users over Ray-
leigh fading channels. In particular, for these systems we
show that, at high SNR, the unintended receiver Pr(ε) over
channels with K degrees of diversity decays as 1/

√
SNR,

in contrast to the 1/(SNR)K decay rate exhibited by the
intended receiver Pr(ε). We develop computationally effi-
cient simulation-based metrics for characterizing the unin-
tended user Pr(ε). Based on our analysis, we demonstrate
that the Pr(ε) improvements due to diversity techniques are
substantial for intended users but only marginal for unin-
tended users.

The outline of the paper is as follows. In Sec. 2 we
describe the chaotic DS/SS systems and the channel mod-
els of interest. In Sec. 3 we develop a lower bound on the
asymptotic decaying rate of the unintended receiver Pr(ε),
and develop metrics for predicting the unintended receiver
Pr(ε). These metrics are then exploited in Sec. 4 to demon-
strate the Pr(ε) advantages provided to intended receivers
over fading channels with temporal, spectral or receiver an-
tenna diversity. Finally, Sec. 5 contains concluding remarks.

2. SYSTEM MODEL

In this section we present the class of chaotic DS/SS sys-
tems and channel models that are of interest in this paper.

A system model for the chaotic transmitter is shown in
Fig. 1. The message stream b[n] ∈ {

+
√Eb,−

√Eb

}
is a

sequence of independent and identically distributed (IID)
binary-valued symbols with equally likely symbol values,
and c[n] is the spreading sequence obtained by iterating an
initial condition c[0] through an 1D chaotic map. Besides
replacing binary-valued shift-register spreading sequences
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Fig. 2. Upper graphs: signal trajectories for nested maps
based on dyadic map, given b[0] = b[1] (solid), and b[0] =
−b[1] (dashed). Lower graphs: associated decision regions
for unintended receivers.

with chaotic sequences, the system in Fig. 1 is effectively
identical to a conventional DS/SS system with spreading
gain L. We consider a general fading channel model, where
the intended and unintended users’ received signal is

yk[n] =
A√
L

αk[n]c[n]b
[⌊n

L

⌋]
+ wk[n] , 1 ≤ k ≤ K , (1)

where the channel gains αk[n] are independent in k, the
wk[n]’s are independent IID zero-mean Gaussian sequences

with power No/2 per dimension, A
�
= 1/

√
E [c2[n]] guar-

antees that Eb equals the transmitted energy per bit, and �x�
denotes the largest integer not greater than x. We assume
that, apart from c[0], the unintended receiver has the same
information as the intended receiver, including knowledge
of αk[n].

The model (1) captures many channels of interest for
proper choice of the characterization of αk[n]. With K = 1,
and α[n] = α1[n] an IID process, it captures time-selective
flat fading channels (with n denoting the time index). The
index n may also be associated with subcarriers in orthog-
onal frequency division multiplexing schemes for obtaining
spectral diversity over frequency-selective channels. Also,
with K ≥ 1, the model (1) naturally incorporates multiple
receiver antenna scenarios with slow/fast fading. We first
characterize the unintended receiver Pr(ε) for slow flat fad-
ing with K = 1, where α = α1[n] has a Rayleigh PDF
normalized so that E

[
α2

]
= 1;

pα(α) = 2αe−α2
, α ≥ 0 .

We then exploit our findings to deduce the Pr(ε) trends of
unintended users over channels with diversity.

2.1. Sequences from Piecewise-Linear Chaotic Maps
In this section we briefly review the chaotic DS/SS systems
introduced in [3]. The chaotic spreading sequences used in
this work are generated via the recursion

c[n] = F (c[n − 1]) , (2)

initialized with an initial condition c[0] ∈ [−1, 1]. The map
F belongs to the class of piecewise-linear maps that are gen-
erated via recursive “nesting” algorithms in [3], initialized
with an r-adic map, as illustrated in Fig. 2. For any nested
map, E

[
c2[n]

]
= 1/3, thus A =

√
3 in (1). These nested

maps have several important properties [3]. First, increasing
the recursion step � monotonically increases the associated
unintended receiver Pr(ε) while preserving the intended re-
ceiver Pr(ε). Also, the observation pairs {y[DL−1], y[DL]},
D = 1, 2, · · · dominate the optimal decision rules for un-
intended receivers. In particular, only a small number of
observations at the boundary between two modulated code-
words affect the unintended receiver Pr(ε), and this number
does not grow with the spreading gain. Moreover, the recur-
sion steps monotonically degrade the unintended user Pr(ε)
in both AWGN and fading channels. This is because fading
amounts to scaling the axes of decision regions in Fig. 2,
and, hence, increasing � implies finer partitioning of regions
regardless of the channel.

3. UNINTENDED RECEIVER Pr(ε) ANALYSIS

In this section we show that the unintended receiver Pr(ε)
curves for DS/SS over slow flat Rayleigh fading channels
with spreading sequences generated by the maps of Sec. 2.1
exhibit a constant decaying rate at high average bit SNR γb.
We also develop computationally viable simulation-based
approximations on the unintended receiver Pr(ε) .

3.1. Asymptotic Decaying Rate of Pr(ε)

In the following we sketch a proof of the fact that the unin-
tended receiver Pr(ε) for r-adic map based DS/SS is lower
bounded by a function that decays as 1/

√
γb at high γb.

Since for any nested map there exists a corresponding ini-
tializing r-adic map with lower unintended receiver Pr(ε),
the 1/

√
γb bound also holds for all nested maps.

We develop a lower bound on the Pr(ε) of detecting an
arbitrary, but fixed, differentially encoded symbol given ob-
servation of y[n] in (1). In particular, we assume that an
IID sequence i[n] = ±1 is differentially encoded into the
sequence b[n] = i[n] b[n − 1] used in (1), and focus on de-
tection of i[D], for some 1 ≤ D ≤ N − 1, based on

y
�
= [y[0] y[1] · · · y[NL − 1]]T . (3)

To obtain a lower bound on the Pr(ε), we consider a de-
tector that is provided with the remaining information sym-
bols {i[n]; 1 ≤ n ≤ N − 1, i �= D} as well as some addi-
tional side information that depends on whether or not c[0]

belongs in the set Io
�
=

⋃
c∈C(D) I(c), where I(c)

�
= (c, c +

∆), ∆
�
= 2 r−(NL−1), and C(D) is the preimage of {0}

under FDL−1. Specifically, when c[0] /∈ Io, i[D] is de-
clared to the receiver; when c[0] ∈ Io, the receiver is only
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told that c[0] is from the set {±c[0] + δ}, where c[0] de-
notes the unique c ∈ C(D) for which c[0] ∈ (c, c + ∆), and

δ
�
= δ(c[0]) = c[0] − c[0]. It can be shown [3] that the opti-

mal receiver with this side information (and knowing α) is
inferior to the optimal detector in the context of binary sig-
naling with codewords xi[D] and x−i[D], where xi[D] is the
transmitted vector, defined as y in (3) with y[n] replaced by
A√
L

αc[n] b[�n/L�], and where x−i[D] is the vector closest
in Euclidean distance to xi[D] among those associated with
the antipodal hypothesis, and corresponds to using c[n] gen-
erated from c[0] = −c[0] + δ. Thus,

Pr(ε|c = c[0] + δ, α) ≥ Q
(√

γ̃(δ, α)
)

(4)

where

γ̃(δ, α)=
‖x1−x−1‖2

2No
=δ26α2Eb(r2DL−1)

(r2−1) No
=Cγbα

2δ2 , (5)

with C = 6(r2DL−1)
r2−1 . Conditioned on α and c[0]∈ I(c[0]), δ

is uniformly distributed in (0, ∆) and, hence, the PDF of γ̃
in (5) is

pγ̃(γ) =
1

2∆

√
π

γCγb

(
1 − erf

(√
γ

∆2Cγb

))
.

We next pick an arbitrary but fixed γo (independent of γb).
Using (4), we have

Pr(ε)≥Pr (c[0] ∈ Io)
∫ ∞

0

Q (
√

γ) pγ̃ (γ) dγ

≥P (D−N)LQ(
√

γo)
∫ γo

0

pγ̃ (γ) dγ

=P (D−N)LQ(
√

γo)
{√

πγo

∆2Cγb

(
1−erf

(√
γo

∆2Cγb

))

+1 − exp
{
− γo

∆2γbC

}}
. (6)

As γb increases, (6) converges to the following bound:

Pr(ε) ≥ Q (
√

γo)
1√
γb

rNL−1

2

√
πγor2 − 1

6(r2DL − 1)
. (7)

3.2. Pr(ε) Performance Evaluation

In this section we develop computationally viable methods
for evaluating the unintended receiver Pr(ε) in slow Ray-
leigh fading for DS/SS signaling with the nested maps of
Sec. 2.1. The methods we present can be readily extended
to all the fading channel models described in Sec. 2.

A lower bound on Pr(ε) is obtained by assuming that the
unintended receiver knows that the initial condition is from
the set {c[m]}M

m=1 for some M significantly larger than the
observation interval NL. In particular, the unintended re-
ceiver Pr(ε) is bounded by that of the optimum receiver in

0 10 20 30 40 50
10

−2

10
−1

10
0

E[γ
b
] (dB)

P
r(

ε)

upper bound
& w = 1

w = 2 & 4

L = 16, r = 2, l = 0

(E[γ
b
])−1/2

(M = 4092)

upper bound
w = 1
w = 2
w = 4

Fig. 3. Simulated upper bound and approximate lower
bounds on the unintended receiver Pr(ε) for various w.

the case that, in addition to the observation y in (3), the
receiver is given b[0], {i[n]; 1 ≤ n ≤ N − 1, n �= D}, and
c[0] ∈ {c[m]}M

m=1. This effectively transforms the uniform
PDF of c[0] to a posterior PMF of M impulses. The associ-
ated ML detector for i[D] is given by

îLB(y)= arg max
i∈±1

M∑
m=1

exp

{
1

No

NL−1∑
n=0

(
y[n]αFn(c[m])√

L/12
b
[⌊n

L

⌋]

− 3Eb

L
(αFn(c[m]))2

)}
. (8)

Computationally viable approximations to Pr(ε) are obtained
by simulating (8) with y replaced by a windowed version

yw
�
= [y[DL−w] y[DL−w+1] · · · y[DL+w]]T, for

1 ≤ w ≤ �NL/2�. These approximations can prove accu-
rate even when w = 1, due to the dominance of the pairs of
observations at the codeword transitions on the Pr(ε) [3],
and the sensitive dependence of the chaotic map on ini-
tial conditions. Upper bounds can be similarly obtained
by considering the optimum detector of i[D] given the win-
dowed observation y2. This detector is also the minimum
distance detector for the simpler binary-signaling-in-slow-
fading problem, with sets of constellation points

ĉi,k
�
=

[
− (P−1)+2(k−1)

P
i(−1)k(Q−2k+1)

Q

]T

,

where i ∈ ±1 and k = 1, 2, . . . , Q/2. Consequently,

îUB(y) = arg min
i

min
k

∥∥∥y2 − α
√

3Eb/L ĉi,k

∥∥∥2

. (9)

Fig. 3 shows that, for the dyadic map (r = 2, � = 0), the
approximation with w = 2 nearly coincides with the upper
bound and rapidly converges as w increases, revealing that
the approximations to (8) and the upper bound based on (9)
predict the Pr(ε) trends of unintended receivers. The same
trends are empirically observed with nested map DS/SS.
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Fig. 4. Approximate lower bounds on the unintended re-
ceiver Pr(ε) in slow flat Rayleigh fading and AWGN.

Fig. 3 also verifies that the unintended receiver Pr(ε) curves
at high γb indeed decay at the rate of 1/

√
γb.

4. DIVERSITY GAINS WITH CHAOTIC DS/SS

In this section we show that the unintended receivers for
nested map-based chaotic DS/SS cannot fully exploit the
available degrees of diversity in Rayleigh fading channels.

For the nested maps, the time- and frequency-selectivity
of channel and the available degrees of diversity K do not
affect the asymptotic decaying rate of unintended receiver
Pr(ε). Specifically, the decaying rate of 1/

√
γb in slow

flat fading, the worst case channel, is also the decaying rate
in AWGN [3]. This is illustrated in Fig. 4 for the dyadic
map. The unintended user Pr(ε) in AWGN provides a lower
bound on the unintended user Pr(ε) over any fading chan-
nel with the same average received SNR, regardless of the
available degrees of diversity. This lack of dependence of
the decaying rate on the degrees of diversity in the channel
is due to chaotic spreading. Indeed, from the perspective
of unintended users, chaotic spreading can be viewed as ad-
ditional fading process with uniform PDF, dominating the
channel fading process and, hence, the decaying rate.

Fig. 4 also shows that the gap between the Pr(ε) in slow
flat fading and the Pr(ε) in AWGN is less than 4 dB. As a
result, in the presence of K degrees of spectral or temporal
diversity, the unintended receiver Pr(ε) gap in γb between
K = 1 and K = ∞ is at most 4 dB. This small gap is due to
the dominant effect of the fading process c[n] on the Pr(ε).

K-receiver antenna diversity, yielding K-fold average
output SNR gains, cannot be fully exploited by unintended
receivers. As Fig. 5 demonstrates, the Pr(ε) improvements
due to increasing the number of antenna elements are only
substantial for intended users. This is a direct consequence
of the difference in the asymptotic decay rates between the
intended and unintended receiver Pr(ε). Even for scenar-
ios where the unintended receiver can exploit larger num-
ber of antennas, the additional number of antennas required
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Fig. 5. Intended receiver Pr(ε) (dashed) and approximate
lower bounds on the unintended receiver Pr(ε) (solid) for
K degrees of spatial diversity in slow flat Rayleigh fading.

for unintended receiver to outperform intended receivers at
a target Pr(ε) is substantial. For instance, K ≈ 256 an-
tennas are needed by the unintended user to outperform a
single-antenna intended receiver at a target Pr(ε) of 0.1 for
a dyadic map DS/SS with L = 16, and even higher K’s for
systems with higher r, �, and L.

5. CONCLUSION

In this paper we investigated the Pr(ε) advantages provided
to intended users by a class of chaotic DS/SS systems over
fading channels. For these systems, we showed that the
Pr(ε) of unintended receivers with K independent fading
channels improves only as 1/

√
SNR, unlike the intended

receiver Pr(ε), which decays as 1/(SNR)K . We also de-
veloped methods for quantifying the unintended receiver
Pr(ε), and demonstrated that unintended receivers cannot
fully realize temporal, spectral, or receiver antenna diver-
sity gains, showing that chaotic DS/SS can provide reliable
and private communication over fading channels.
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