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ABSTRACT

In CDMA downlink, subspace channel estimation can not
be applied directly since long spreading codes destroy the
rank condition of the received data covariance matrix. How-
ever, after introducing temporal diversity in the transmitted
chip sequence for all users, subspace technique can be ap-
plied to estimate channel. Detection of the desired user’s
signal is then performed by a channel equalizer cascaded
with the desired user’s code despreader. Analytical channel
estimation mean-square-error is derived based on perturba-
tion theory. Experimental comparison with our previously
proposed spatial diversity method shows superior perfor-
mance of the proposed scheme.

1. INTRODUCTION

Direct sequence (DS) code division multiple access (CDMA)
technology has become an appealing solution to support
emerging multirate multiuser communications. Despite var-
ious advantages, adopted long spreading codes inevitably
destroy cyclostationarity of CDMA signals, making many
of the existing channel estimation and detection approaches
for short code CDMA systems not directly applicable. Study
on channel estimation and detection techniques for long code
CDMA systems has received considerable attention in re-
cent years. Given transmitted pilot symbols of all users,
least squares (LS) fitting or iterative maximum likelihood
(ML) approaches are proposed for symbol detection in [1],
[2] in the absence of channel state information (ISI). Semi-
blind channel estimation solutions via subspace based data
projection for downlink are also derived [3]. A blind up-
link channel estimation method using correlation matching
techniques is proposed in [4]. Blind downlink channel es-
timation methods have been reported by applying subspace
techniques [5], [6]. Under the assumption of known CSI,
symbol-level and chip-level adaptive MMSE interference
suppression and channel equalization schemes have also ap-
peared [7], [8].

In CDMA downlink, user specific short Hadamard codes
combined with the base station’s long codes are used to
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spread users’ signal spectrum, resulting in orthogonal trans-
mitted chip sequences for different users. However, this
orthogonality is destroyed at the receiver due to multipath
propagation. Therefore, channel equalization is necessary
to restore such orthogonality [9] before code despreading is
applied to detect the desired user’s information sequence.
Most existing channel equalization methods assume perfect
CSI, while only focusing on signal detection and perfor-
mance evaluation. Although [5] considers blind channel es-
timation, it requires spreading codes of other users which
may not be accessible by a particular mobile user. [6] em-
ploys spatial diversity to create multiple subchannels and
thus improve the rank condition of the channel matrix, ren-
dering the use of subspace technique for direct channel es-
timation. However, spatial diversity introduces more chan-
nel parameters to be estimated, resulting in degraded per-
formance.

In this paper, we propose to deploy temporal diversity
to assist blind channel estimation. By retransmitting par-
tial chip sequence, or more generally, precoding the chip
sequence to introduce temporal diversity in the transmitted
data, rank condition on composite channel matrix including
precoding effect is improved. As a result, noise subspace is
created in the covariance of the received data vector. Sub-
space technique is then applied for channel estimation. The
covariance and mean-square-error (MSE) of the channel es-
timate are derived in closed forms and verified by simula-
tion examples. Comparison with our previously proposed
spatial diversity assisted channel estimation method is also
performed by simulation.

2. CONVENTIONAL CDMA DOWNLINK WITH
LONG CODES

Consider a base station communicating with J mobile sta-
tions in a CDMA system. The jth user’s aperiodic spreading
codes ¢jn(k) (k =0,..., P — 1), which are the combina-
tion of its Hadamard codes and base station’s long codes, is
used to spread bit w;(n). Let the chip sequence be trans-
mitted through a common FIR channel with unknown co-
efficients g(n). Suppose the channel is casual with order
g (e, g(n) = 0forn < 0orn > ¢). Then the chip-
rate discrete-time signal is a superposition of signals from
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J users corrupted by noise [5]

J q
ZZg )sj(n —1) +v(n),

y(n) =
j=11=0

sj(n) = Z w;(k)cjk(n — kP) (1
k=—o0

where v(n) is additive white Gaussian noise (AWGN) with
variance o2. If we collect P chip rate samples in a big vector

as G, 2 [y(nP), - y(nP + P — 1)]7, then
U =Glbon_1(P—q+1:P), b]]" )

where G is a P x (P + q) Toeplitz matrix whose first row

is given by [g(0), ..., g(g), 0], b, = Z;Zl cjnwi(n)is a
sum chip sequence associated with the nth symbol from all
users, ¢j., = [¢jn(0), -, ¢jn(P — 1)]T, and by, _1 (P —
g + 1 : P) contains the last ¢ elements of b,,_1.

Clearly, direct subspace channel estimation based on (2)
is impossible, since G has no null column space. In [6], we
have shown that employing spatial diversity with appropri-
ate number of subchannels makes G a block Toeplitz and
tall matrix. Consequently, subspace approach can be ap-
plied for channel estimation. In this paper, we will solve
this problem from a different perspective, which modifies
the conventional CDMA scheme to include temporal diver-
sity in the transmitted chip sequence, as shown next.

3. TEMPORAL DIVERSITY ASSISTED
TRANSMISSION SCHEME

Let’s consider the following communication scenario which
mimics OFDM modulation [10]. Each user, after transmit-
ting its nth symbol’s spread chip sequence, will retransmit
the first v chips but in reverse order. Then in the nth sym-
bol period, the transmitted sum chip sequence from all users

becomes b,, 2 [bn, bn(v —1:0)]. After multipath propa-
gation, the new received data vector spanning P + v chips
can be shown to be

A

U = (P +v),--,y((P+v)+(P+v)-1)]"
= Qb ((P+v—q+1:P+v), 6.7 +9, 3)

where G with dimension of (P + v) x (P + v + q) is still
a Toeplitz matrix structured as G, and ¥,, is AWGN. If we
focus on the partial data vector free of intersymbol interfer-
ence (ISI), then we have

IIl>

Y, =9,(q+1:P+v)=0Gb, +v, )

A . . .
where T' = [0(pyy—q)xq, IP4v—q] is a selection matrix to

discard the first ¢ elements of §,,, G 2 G(:,q+1: P+v+q)
contains the last P + v columns of G. By properly choosing

v, existence of y,, can be guaranteed irrespective of channel
order ¢. Considering that the last v elements of b,, are the
repetition of the first v chips of b,,, one can rewrite Y, as
the following,

. =TGb, + v, (5)

where G is obtained by removing the last v columns of G
and add them respectively into its first ¥ columns in reverse

order. These column operations can be expressed by G =
GW. Thus (5) becomes

. =TG¥b, +v, (6)

where W now can be regarded as a precoding matrix. After

this restructure, I‘_C’; becomes a tall matrix with dimension
(P 4+ v — q) x P if we choose v > ¢, and it has full col-
umn rank under some channel condition. In this way, signal
subspace and noise subspace are created in data covariance

matrix R = E{ynyn }.

In a more general way, we can apply an arbitrary pre-
coding matrix ¥ of dimension P; x P to the conventional
CDMA spread sequence to introduce temporal diversity in
the transmitted chips. The data model for the general case
still follows (6). Taking P, > P + g, the input/output trans-
formation matrix T'GW is a tall matrix with dimension of
(Py —q) x P. Clearly, (6) is a special case with Py = P+v.
¥ = [Ip, [Zp, p, 0]T]T where Z denotes anti-diagonal
identity matrix. Next we turn to channel estimation based
on model (6).

4. SUBSPACE CHANNEL ESTIMATION AND
MULTIUSER DETECTION

4.1. Subspace Channel Estimation

It is observed that channel parameters are embedded in G.
For convenience, define a channel vector g = [¢(0),...,
g(q)]T and H = T'GW in (6). Since G is a Toeplitz ma-
trix with first column [(Z,419)T,0]7, we can express it by
B(Ip, ® (I,119)) where B = [J°A, ... J" 1Al J is
a shifting matrix with all elements of the first sub-diagonal
below the main diagonal to be ones, A = [I441,0], ®
stands for Kronecker product. After expressing ¥ and H
into columns as [£g,...,&p _,] and [ho,...,hp, 1] re-
spectively, and applying properties of ®, one can verify that

h; = A;g where A; =TB(§; ® Ip,)Z,+1. Consequently,
the covariance matrix is obtained as
P1 -1
R=pHH" + o)1 =p Y Aigg" Al +olI (7)
=0

where p = Jo202, 02 = E{|c;n(i)|?}, 02 is the symbol
power. Since A;g fori = 0,...,P — 1 spans the signal
subspace, UfAig =0for¢=0,...,P, —1whereU,, de-
notes the noise subspace of R. As a result, the channel vec-

tor is the null vector of the matrix X 2 > AU, UP A,
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We thus propose to minimize it and obtain the correspond-
ing channel estimation method

g =arg min o Xa. ®)
[loef|=1

Eq. (8) suggests that g is the eigenvector of X correspond-
ing to its minimum eigenvalue.

4.2. Multiuser Detection

Once the common channel vector is estimated by (8), zero
forcing (ZF) and MMSE equalizers can be constructed re-
spectively to detect the sum chip sequence b,, in (6). Then
the desired user’s codes are used to despread the sum sig-
nals, yielding the symbol estimate at each time instant. Sup-
pose user 1 is the desired user. The estimated symbol by ZF
detection is given by

@sp1(n) =cf H'y,

where T denotes pseudoinverse. Correspondingly, the MMSE
detection yields

s H p7H p—1
Wmmse,1(n) = ¢, H Ry,

5. CHANNEL ESTIMATION
MEAN-SQUARE-ERROR

When estimated from finite data by sample average R =

.y SN ¥,y the covariance matrix is perturbed from its
ideal value, resulting in a perturbation in the channel esti-
mation. We next derive the covariance of the channel esti-
mation error in a similar way to [6]. Let’s denote the pertur-
bation by preceding the corresponding quantity by J, and
the perturbed quantity with 7, i.e., g = g — g. Since
R is perturbed by d R, its null space U, is perturbed by
U, ~ —%(HHH)T(SRU,I [11], which results in a per-
turbation to X

P1—1
§X = Y A (U,0UY +0UUNA,. (9

=0

Due to § X, g obtained from (8) is perturbed with perturba-
tion dg [11]

bg~—-X16Xg. (10)
After substituting (9) in (10), applying dU,, and noticing

that Uf A;g = 0, we obtain the perturbation of channel

estimate
P-1

6g =~ 1 > T.U[sRt; (11)
i=—q

where T'; and £; are deterministic quantities

T;=X'A]'U,, t;=(HH")'Ayg.

Therefore, the covariance of g becomes

1
Covy ~ 75 > T.U[E{sRt;t]sRIU,T], (12)
i,J
and the mean-square-error is equal to the trace of Cov,.
Both quantities depend on the term E{éRt;t{'6R}. Ap-

plying the result for E{6 Rt;t;'6 R} in [12] and following
similar steps as [6], one can verify that (12) reduces to

2
Covy ~ ";2 S HRt,)T,TY. (13)

Np? &
i,

Rewriting R = pHH" 402U U + 02U, U, with U,

as the signal subspace of R, we obtain (tfl Rt;) = pd(i —

j) + O(c?). Here with a little abuse of the notation, §(.)

denotes delta function. Using this result, and omitting the

ol term in (13), we have

2 2
Covy m 22N 1,1l = 7o xt (14)
g Np - =1 Np -

3

Therefore, channel estimation error is proportional to the
noise power and inversely proportional to data length and
total transmission power (p).

The above analysis is based on the assumption that chan-
nel is identifiable from X . Channel identifiability condition
will be addressed in our future work. Moreover according to
(14), the precoding matrix ¥ will affect both A; and U ,, in
X, and thus affect the channel MSE. The optimal ¥ yield-
ing minimum MSE will also be investigated in our future
work.

6. SIMULATION EXAMPLES

In this section, we compare the performance of the proposed
channel estimator with the spatial diversity aided channel
estimator [6], and also verify our analysis. Both the partic-
ular precoding matrix ¥ = [Ip, [Zp,—p, 0]7]7 and bi-
nary random ¥ are considered for the proposed method.
They are termed as ‘TDM1’ and ‘TDM?2’ respectively. The
approach in [6] is termed as ‘SDM’. The transmitted se-
quences are drawn from a binary constellation [—1, 1]. Each
user’s short codes are Hadamard codes, which are then mul-
tiplied by base station’s binary random codes. The system
parameters are P = 16, J = 10 for all methods, P; = 32
for TDM1 and TDM2, and M = 2 for SDM. Moreover, the
trace of W is constrained to be P such that the average
transmission power remains constant either with or without
precoding. The downlink channel is randomly generated
with Gaussian distribution, and the channel for TDM1 and
TDM2 is assumed to be the same as the first subchannel of
SDM. All simulation results are based on 100 realizations.
Fig. 1 illustrates MSE in the presence of 15dB SNR.
The channel is assumed to have order 3, and is fixed for
all realizations once randomly generated. It is observed
for both TDM1 and TDM?2 that experimental MSE curves
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converge to their analytical ones from N = 500, verify-
ing our MSE analysis. On the other hand, both TDM1 and
TDM2 outperform SDM. To further show the applicability
of the proposed scheme, we compare TDM2 and SDM in
a more general situation, where channel with order ¢ = 6
and the binary matrix ¥ are both randomly generated for
each realization. 500 symbols are used for channel estima-
tion. BER performance is then calculated based on an in-
dependent record of 5000 data symbols. The average MSE
is plotted in Fig. 2 (a). As expected, TDM2 outperforms
SDM, since the former has much fewer channel parame-
ters to estimate. On the other hand, experimental MSE of
TDM2 converges to its analytical value at high SNR. Fig.
2 (b) illustrates BER performance of both MMSE and ZF
receivers for TDM2 and SDM. All receivers have similar
performance at low SNR, while the receivers for TDM?2
demonstrate much better BER performance than those of
SDM from moderate to high SNR.
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Fig. 1. Channel MSE v.s. N, P=16, g=2, SNR=15dB.
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Fig. 2. Effect of SNR, P=16, ¢g=6, N=500.
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