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ABSTRACT

This paper considers the problem of interference suppression
in GPS coarse/acquisition (C/A) signals. Particularly, an anti-
jam receiver is developed utilizing the unique repetitive feature
of the GPS C/A-signal. The proposed receiver does not require
the knowledge of the transmitted GPS symbols or the satellite
positions. It utilizes the repetition of the Gold code within each
navigation symbol to simultaneously suppress the interference
of all satellites.

1. INTRODUCTION

GPS employs direct-sequence spread-spectrum (DS-SS) sig-
naling. For each satellite, two different pseudorandom codes,
a coarse/acquisition (C/A) code and a precision (P) code, are
used to modulate the navigation information, which are binary
phase shift key (BPSK) symbols transmitted at a data rate of
50 bps [1]. The C/A-code is a Gold code with a chip rate of
1.023 Mchips/sec (or code period P = 1023) and repeats every
millisecond, i.e., there are twenty replicas of the code within
each symbol. This property allows a different approach for in-
terference suppression in GPS than that used in typical CDMA
communication systems.

The spread-spectrum (SS) scheme, which underlies the GPS
signal structure, provides a certain degree of protection against
interference. However, when the interferer power becomes
much stronger than the signal power, the spreading gain alone
is insufficient to yield any meaningful information. For the
C/A-signal, the GPS receiver is vulnerable to strong interfer-
ers whose power exceeds the approximately 30 dB gain offered
via the spreading/despreading process.

In GPS, interference can be combated in the time, space,
or frequency domain, or in a domain of joint variables, e.g.,
time-frequency [2], or space-time [3]. Time-frequency signal
representations equip the receiver with the ability to detect the
time-frequency signature of the nonstationary interferer and re-
move it through synthesis or subspace projection methods [4].
Space-time processing relies on antenna arrays to provide the
receiver with spatial and temporal selectivity. It is noted, how-
ever, that the existing techniques for GPS interference suppres-
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sion do not fully utilize the GPS signal structure, namely the
replication of the GPS C/A-code.

This paper proposes a novel interference suppression tech-
nique in GPS using the repetitive structure of the GPS C/A-
signals. Due to the repetition of the spreading code, the GPS
C/A-signal exhibits strong self-coherence between chip sam-
ples that are separated by integer multiples of the spreading
gain. Using this unique feature, an anti-jam receiver based on
the spectral self-coherence restoral (SCORE) algorithm [5] can
be constructed to suppress interferers that are either uncorre-
lated with or of different self-coherent properties from that of
the GPS signal. The proposed GPS receiver does not require
the knowledge of the navigation data or satellite locations to
perform interference suppression.

2. PROPOSED GPS RECEIVER

The proposed GPS receiver with an M -element array is dis-
played in Figure 1. The structure of the received noise-free
GPS signal is depicted in Figure 2, where the BPSK modu-
lated GPS navigation symbols are spread by a Gold code with
spreading gain of P = 1023 and chip-rate sampled. The
spreading code is repeated 20 times within each symbol. A
data block and a reference block are formed at the receiver,
each containing N consecutive samples. The distance between
the respective samples in the data and reference blocks is set
equal to jP chips, where 1 ≤ j < 20. Due to the repetition
of the spreading code, the nth sample in the data block has
the same value as the corresponding nth sample in the refer-
ence block, providing that the two samples belong to the same
symbol.

The data block is processed by a beamformer w, whereas
an auxiliary beamformer f provides a reference signal by pro-
cessing samples in the reference block. An error signal e(t) is
formed from the beamformer output and the reference signal.
For the proposed receiver, the weight vector w is adaptively
updated according to the cross-SCORE algorithm, while f is
renewed using the least-squares algorithm.

The signal reaching the GPS receiver is the aggregate of
the GPS signals of satellites currently in the field of view, sig-
nal multipaths, additive white Gaussian noise (AWGN), and
broadband/narrowband interference. Thus, the signal received
at the GPS receiver, after the frequency synchronization with
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Fig. 1. Block diagram of the proposed GPS receiver.
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Fig. 2. Noise-free GPS signal structure.

the carrier, can be expressed as

x(n) =
Q∑

q=0

sq(nTs − τq)aqe
jφq +

K∑
k=1

Bkuk(n)dk + v(n),

(1)

where sq(n) denotes the GPS signal, Ts is the Nyquist sam-
pling interval, Q is the number of multipath components, with
subscript 0 designated to the direct-path signal, sq(n), τq, and
φq are the signal sample, time-delay, and phase-shift of the qth
multipath component, respectively, K is the number of inter-
ferers, uk(n) is the waveform of the kth interferer with ampli-
tude Bk, aq and dk are, respectively, M × 1 spatial signatures
of the qth satellite multipath and the kth interferer, and v(n)
consists of noise samples. Let s(n) := s0(nTs − τ0)a0e

jφ0

denote the data vector across the array due to the direct-path
signal. Then, equation (1) can be rewritten as

x(n) = s(n) + s̃(n) + u(n) + v(n),
where s̃(n) :=

∑Q
q=1 sq(nTs−τq)aqe

jφq represents the signal

multipath and u(n) :=
∑K

k=1 Bkuk(n)dk. The counterpart of
x(n) in the reference block within the same symbol can be
written as

x(n − jP ) =
Q∑

q=0

sq(nTs − τq)aqe
jφq

+
K∑

k=1

Bkuk(n − jP )dk + v(n − jP )

= s(n) + s̃(n) + u(n − jP ) + v(n − jP ),

where we have assumed that, when considered within the same
symbol, sq(nTs − τq) = sq(nTs − τq − jP ), q = 0, · · · , Q.

The beamformer output and the reference signal are given
by z(n) := wHx(n) and d(n) := fHx(n− jP ), respectively.
We define the following covariances:

Rzd := E{z(n)dH(n)} = wHE{x(n)xH(n − jP )}f ,
Rzz := E{z(n)zH(n)} = wHE{x(n)xH(n)}w,

Rdd := E{d(n)dH(n)} = fHE{x(n − jP )xH(n − jP )}f .
Under the assumption that the GPS signal, interference, and
noise are independent, we have

Rxx := E{x(n)xH(n)} = Rs + Ru + Rv. (2)

The three terms in (2) denote, respectively, the covariance ma-
trices of the GPS, including both the direct and multipath sig-
nals, interference, and noise: Rs := E{[s(n) + s̃(n)][s(n) +
s̃(n)]H}, Ru := E{u(n)uH(n)}, and Rv := E{v(n)vH(n)}.
Providing that the only signals are correlated when delayed jP
samples are those of the GPS, the cross-correlation matrix be-
tween the corresponding data vectors in the data and reference
blocks simplifies to

R(P )
xx := E{x(n)xH(n − jP )} = Rs.

Let e(n) := d(n) − z(n) be the error between the out-
put of the beamformer and the reference signal. For a fixed
beamformer w, the error e(n) is minimized in the least-squares
sense when f is given by fLS = R−1

xx rxz , where rxz := E{x(n−
jP )zH(n − i)} = R(P )H

xx w.
The beamformer w is obtained by maximizing the cross-

correlation between z(n) and d(n). Define the following cost
function [5]:

C(w, fLS) :=
|Rzd|2
RzzRdd

=
|wHR(P )

xx f |2
[wHRxxw][fHRxxf ]

=
wHR(P )

xx R−1
xx R(P )H

xx w
wHRxxw

.

(3)

Then, the weight vector w that maximizes C(w, fLS) is read-
ily shown to be the eigenvector corresponding to the largest
eigenvalue of the generalized eigenvalue problem:

Rxxw = λmaxR(P )
xx R−1

xx R(P )H
xx w, (4)

where λmax is the largest eigenvalue.
In practice, Rxx and R(P )

xx in (4) are unknown and have to
be replaced by their sample estimates. Define the M ×N data
and reference matrices as XN := [x(n) · · · x(n − (N − 1))]
and XNref := [x(n − jP ) · · · x(n − (N − 1) − jP )], where
N is the block length and N ≤ P . The sample covariance
matrices are then given by R̂xx = XNXH

N/N and R̂(P )
xx =

XNXH
Nref/N . The beamformer w is obtained by solving the

eigenvalue problem (4) using the sample estimates given above.

3. COVARIANCE MATRIX ESTIMATIONS

The key assumption made for the proposed GPS receiver is
that both the data and reference samples, x(n) and x(n− jP ),
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1 ≤ j < 20, belong to the same navigation symbol. How-
ever, since the data samples used for covariance matrix esti-
mations are selected randomly, and interference suppression is
performed prior to any symbol synchronization process, there
is no guarantee that the data and reference samples belong to
the same symbol. Questions arise as how will the receiver per-
form when the above assumption fails, i.e., the data and refer-
ence samples lie in two adjacent symbols?

To answer this question, we relax the condition imposed in
Section 2, and develop the general expression of the covariance
matrices. Define the following events: A1: x(n) & x(n− jP )
are within the same symbol; A21: x(n) & x(n−jP ) are in two
adjacent symbols with the same sign; A22: x(n) & x(n− jP )
are in two adjacent symbols with opposite signs. With random
selection of time n, and using the repetitive property of the
C/A-code, it is straightforward to show that the corresponding
probabilities of the above events are Prob{A1} = T−jP

T =
1 − jP

T , Prob{A21} = jP
2T , and Prob{A22} = jP

2T , respec-
tively, where T = 20P is the total number of samples in one
symbol. The exact expression R(P )

xx can be written in terms of
the above probabilities and conditional expectations as

R(P )
xx =E{x(n)xH(n − jP )|A1}Prob{A1}

+ E{x(n)xH(n − jP )|A21}Prob{A21}
+ E{x(n)xH(n − jP )|A22}Prob{A22}

=
(
1 − jP

T

)
Rs,

(5)

which shows that R(P )
xx depends on the distance between the

data and reference samples jP . The maximum value of R(P )
xx

is achieved when j = 1, representing the closest repetition
between the data and reference blocks.

In practice, however, sample estimates replace the exact
values in equations (5). It can be readily shown that if XN and
XNref are jP samples apart, 1 ≤ j < 20, the probability of
the two blocks belonging to the same symbol or, equivalently,
in two adjacent symbols with the same sign, is 1− jP+N

2T . The
probability that XN and XNref are in two adjacent symbols
with opposite signs is jP−N

2T . Using the above probabilities,

the expected values of R̂xx and R̂(P )
xx are, respectively, ¯̂Rxx =

Rs + Ru + Rv and ¯̂R(P )
xx =

(
1 − jP

T

)
Rs, which indicate

that R̂xx and R̂(P )
xx are unbiased estimates of Rxx and R(P )

xx ,
respectively.

The covariance matrix estimations obtained above use only
one data block and one reference block. It does not utilize
the 20 replicas/symbol property. Consider the case shown in
Figure 3, where the gth data block(respectively, the (g − 1)th
reference block) is split between two adjacent symbols with
opposite signs. Using this data (reference) block and its asso-
ciated reference (data) block will yield poor time-average esti-
mation, due to term cancellation. This problem can be reme-
died if multiple data and reference blocks are used. With up to
19 data blocks (respectively, reference blocks), only one block
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Fig. 3. Multiple data and reference blocks.

could be at symbol transition, whereas each of the other re-
maining blocks belongs to one symbol. Using G data and ref-
erence blocks, we have R̂xxG = 1

G

∑G
g=1 XN (g)XH

N (g)/N

and R̂(P )
xxG = 1

G

∑G
g=1 XN (g)XH

Nref(g)/N . A maximum of
only two of the G terms in the above equation may suffer from
symbol transition, whereas the rest of the terms will be coher-
ently combined.

To analyze the receiver performance, we derive the mean
and variance of the covariance matrix estimation. To sim-
plify the derivation, we rewrite the received signal vector as
x(n) = s(n)a(θ) + v(n), where v(n) contains samples of in-
terference and noise, with zero mean and variance σ2

v . There-
fore, Rs = E{s(n)a(θ)aH(θ)sH(n)} = a(θ)aH(θ), where
it is assumed E{s(n)sH(n)} = 1. When G data and refer-
ence blocks are used, we define the following events: F1: the
first data block or the last reference block is split, F2: one of
the other G − 1 data/reference blocks is split and G1 < G
data blocks (respectively, G1 − 1 reference blocks) are in one
symbol, F3: the data blocks and reference blocks are within
the same symbol, and F4: no split block and the data and ref-
erence blocks are in two adjacent symbols. The correspond-
ing probabilities are: Prob{F1} = N

T , Prob{F2} = N
T ,

Prob{F3} = 1− N+GjP
T , and Prob{F4} = G(jP−N)

T . From
the above probability values, it is straightforward to show that
the expected value of R̂(P )

xx is given by
¯̂R(P )

xxG = ¯̂R(P )
xxG|F1

+ ¯̂R(P )
xxG|F2

+ ¯̂R(P )
xxG|F3

+ ¯̂R(P )
xxG|F4

=
(

1 − jP

T

)
Rs,

(6)

which is equivalent to the the expected value given in (5).
The variance of R̂(P )

xx is given by

var
[
R̂(P )

xx

]
= E

{
R̂(P )

xx R̂H(P )
xx

}
− E2

{
R̂(P )

xx

}
.

Since the covariance estimate is unbiased, the variance of R̂(P )
xx

is determined by E
{
R̂(P )

xx R̂H(P )
xx

}
. It is shown in [6] that

using G data and reference blocks,

E
{
R̂(P )

xxGR̂H(P )
xxG

}

=
(

1 − 2
jP

T
+ 2

jP

GT

) [
M(N + σ2

v)
N

Ra +
M(1 + σ2

v)
N

Rv

]
,
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which shows the value of using a higher value of G data and
reference blocks in time-averaging.

4. SIMULATIONS

We now examine the performance of the proposed GPS re-
ceiver. We use a linear uniform array consisting of M = 7 sen-
sors with half-wavelength spacing. At the receiver, N = 800
samples are collected in both the data and reference blocks.

First, we consider the case when there is no interference
and multipath. The SNR is −30 dB. We consider covariance
matrix estimations using one data block and one reference block,
both are taken within the same symbol. The performance of the
proposed GPS receiver is shown in Figure 4(a), where the an-
tenna pattern is formed towards the satellite located at θ = 30◦.

It is known that in GPS, at least four satellites are needed
simultaneously in order to calculate the three-dimensional po-
sition and time. To demonstrate the receiver performance in
the presence of multiple satellites, we select the first four from
the satellite constellation. Since the proposed receiver relies
on the special structure of the GPS signals to suppress inter-
ference and all satellite emitted signals share the same repeti-
tive properties of the C/A-codes, it is expected that the receiver
will pass the signals from all satellites with high gains. In the
simulation, the satellites are located at θ1 = 10◦, θ2 = 30◦,
θ3 = 50◦, and θ4 = 70◦, and SNR = −30 dB. In this particu-
lar case, we use M = 9 sensors and G = 7 data and reference
blocks for covariance matrix estimations. The result is shown
in Figure 4(b), where four clear beams are generated towards
the four satellites.

We next study the performance of the GPS receiver in the
presence of strong jammers. If the jammers have explicit bear-
ings, we can generate the received GPS signals according to
(1), but replacing the spatial signature dk by the respective
steering vector. The antenna pattern is shown in Figure 5,
where the satellite is located at 10◦ and the direction-of-arrivals
(DOA’s) of the three jammers are 30◦, 50◦, and 70◦. It can be
seen from Figure 5 that the receiver is able to generate deep
nulls at the jammer locations.

5. CONCLUSIONS

In this paper, we presented a GPS receiver that is based on the
inherent self-coherence of the GPS C/A-signal. By using this
self-coherence feature, an anti-jam GPS receiver is constructed
to mitigate a wide class of narrowband and broadband interfer-
ers. The proposed receiver does not require any knowledge of
the transmitted signals and the locations of the satellites. Sim-
ulation results have shown that the proposed receiver is capable
of suppressing strong jammers while preserving GPS signals.
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