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Abstract— Staggering the sample times for alternate elements
of a linear antenna array is shown to halve the usual Nyquist
sample-rate bound of twice the one-sided signal bandwidth while
preserving alias-free mapping between spectral components and
plane waves in the far field. The approach can be used on trans-
mit or receive and with lowpass or bandpass sampling, and it
can involve analog up- or down-conversion between data con-
version and the array. The usual element-spacing bound of
half a wavelength at the upper RF band edge is replaced with a
quarter-wavelength bound at the center of the Nyquist sampling
band referred to RF, a reduction only for bandpass sampling.

1 INTRODUCTION

Sampled-data systems operating directly on RF and IF sig-
nals are proposed with increasing frequency and often with
separate, per-channel processing for each element of a phased
array. Generally however, sampling in time and the sampling
in space implicit in a linear array are considered separately,
and the two sampling processes are therefore subject to sep-
arate Nyquist limits. In wideband systems, however, array
elements spaced at the λ/2 spatial Nyquist limit at the up-
per RF band edge are spaced considerably closer, in terms of
λ= c/|f |, at the lower band edge. The alternative presented
here is to design the temporal and spatial sampling jointly us-
ing a minimum of lattice theory—a few pages of Conway and
Sloane’s lattice bible [1] are involved—to avoid this waste-
ful spatial oversampling. A system results in which sample
timing differs by 180◦ for even- and odd-numbered array el-
ements. Remarkably, the required temporal sample rate is
halved with the element density increased by less than a fac-
tor of two for bandpass (temporal) sampling and unchanged
for lowpass (temporal) sampling. The lower sample rate sim-
plifies array-beam realization, and array-pattern design [2] is
straightforward using modern optimization techniques.

The remaining two sections present the idea in detail and
in summary respectively, and the figures and captions alone
form a reasonably self-contained intermediate-level overview.

This work was supported by the Office of Naval Research, the Defense
Advanced Research Projects Agency, and the base-funding program at the
Naval Research Laboratory,

2 SAMPLES ON A LATTICE
AND SPECTRAL REPLICATION

The sample-location lattice. Finitely many signal samples
—from power-up to power-down is a finite interval—applied
to or sampled from finitely many array elements can be rep-
resented by a complex Borel measure y with support on some
finite subset of R,4 each 4D point t of which represents a pair
(x, ct) of spacetime coordinates. Scaling time by c gives all
elements of t length units. The usual 1D assumption of sam-
ples at times T Z for some sample interval T has as its par-
allel in 4D spacetime the assumption that signal measure y

has support contained in some sample-location lattice TZ
M

defined by a 4×M generating matrix T, in DSP a sample-
interval matrix, with linearly independent columns. The el-
ements of TZ

M comprise all possible integer combinations
of those columns, the lattice basis vectors. When y has this
structure it can be expressed in terms of 4D impulses as

dy =
∑

n∈ZM

yn δ(t−Tn) dt, (1)

where only a finite number of samples yn are nonzero.
The number M of lattice basis vectors, the dimension of

the lattice, is important here. The M = 1 case with T =
(0, 0, 0, cT )T corresponds to a conventional 1D sampled sig-
nal on a zero-dimensional “array” comprising a single ele-
ment at the origin. The M = 2 case, the focus of this paper,
corresponds to a linear array. The special case with

T =
(

dû 0
0 cT

)
(2)

is illustrated in Fig. 1 and represents a conventional 1D sam-
pled signal on each element of a linear array aligned with di-
mensionless 3D unit vector û. A planar array with elements
located on a lattice has M = 3, and the uncommon M = 4
case represents an array on a 3D lattice. This paper does
not deal with offset lattices but assumes a sample at the 4D
spacetime origin. The extension to offset lattices is straight-
forward but tedious. Actual design of sample-location lat-
tices for the M = 3 and M = 4 cases is beyond the scope of
this paper, but the principles mirror those presented here.
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Figure 1: Array elements spaced
at interval d along direction û and
driven or sampled synchronously at
interval T have spacetime samples
on this rectangular sample-location
lattice. Both axes have length units.
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Figure 2: Fourier transforming the
Fig. 1 samples tiles the plane with
translations of the spectrum in the
first Nyquist zone (hatched) by off-
sets in this spectral-replication lat-
tice, the dual of the Fig. 1 sample-
location lattice. If d ≤ λ

2
in signal

band |fT | ≤ 1
2
, then propagating

Fourier components, with ‖k‖< |f |
c

,
are in this Nyquist zone.

The spectral-replication lattice. In 1D DSP a signal with
samples in T Z has a Fourier transform that has period T−1

and that therefore is invariant to translations by elements
of T−1

Z. Conversely, a signal with a transform invariant
to translations from T−1

Z certainly has temporal support
in T Z, but that support might lie entirely in some subset
NT Z. Its spectrum would be invariant to translations from
(NT )−1

Z as well as from subset T−1
Z. Care with the anal-

ogous 4D point will be required.
By (1) the Fourier transform of signal measure y is

Y(f ) =
∫

e−j2πfTt
dy(t) =

∑
n∈ZM

yn e−j2πfTTn .

Here f represents 4D frequency coordinates (k, f/c), where
3D vector k is a the negative of the wavenumber and where
normalizing frequency f gives all elements of f inverse length
units. The next few paragraphs are more general, however,
as time t, frequency f , and the various lattice basis vectors
can have identical but arbitrary dimensionality.

To what translations is Y(f ) invariant? Suppose sample-
interval matrix T has M linearly independent columns as
before, and suppose also that the M columns of some matrix
A are basis vectors for a lattice of frequency points. Trans-
lation of Y(f ) by a point from that lattice can be written

Y(f +Ak) =
∑

n∈ZM

yn e−j2π(fTTn+kTATTn),

where k ∈ Z
M is arbitrary. Therefore, Y(f +Ak) = Y(f )

for arbitrary k ∈ Z
M and sample sequence yn if and only if

M×M matrix Z ∆= AT T has only integer elements.
This condition makes the spectrum invariant to transla-

tions from lattice AZ
M, but might AZ

M be a sublattice of
some more-dense lattice for which translation invariance also
holds? Suppose Z is indeed an integer matrix, and assume A
is such that Z = ATT is invertible as well. Define an M
column matrix ∆f by ∆f T = Z−1AT so that A = ∆f ZT.
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Figure 3: The sample-location lattice
of Fig. 1 is modified here by omitting
half the samples, in checkerboard
fashion. It is otherwise unchanged.
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Figure 4: Propagating (k, f/c) pairs
with |fT | < 1

2
form a butterfly-

shaped signal region (“sig”) that be-
comes the first Nyquist zone and
tiles the plane using offsets from this
spectral-replication lattice, the dual
of the Fig. 3 sample-location lattice.
One offset spectral replica is shown.
Halving the sample density in Fig. 3
has doubled the lattice density here
and eliminated the unused half of the
first Nyquist zone in Fig. 2.

Table 1: Comparison of rectangular ping-pong
lowpass-sampling approaches. sampling sampling

sample-location lattice Fig. 1 Fig. 3
spectral-replication lattice Fig. 2 Fig. 4
element spacing, top of band λ/2 λ/2
per-element sample rate fs T−1 (2T )−1

top of signal band fs/2 fs

Certainly ZT
Z

M⊂Z
M, as Z is an integer matrix, so lattice

AZ
M = ∆f ZT

Z
M ⊂ ∆f Z

M . (3)

But
∆fT T = Z−1AT T = Z−1Z = I, (4)

an integer matrix also, so in addition to Y(f +Ak)=Y(f ),

Y(f +∆f k) = Y(f ) (5)

for arbitrary k ∈ Z
M. As lattice AZ

M is a sublattice of
∆f Z

M by (3), frequency-domain periodicity condition (5)
includes the earlier one. Spectral-replication lattice ∆f Z

M

is the dual of sample-location lattice TZ
M, because gener-

ating matrix ∆f , the spectral-period matrix, is defined by
∆fT T = I in (4) and so is the pseudoinverse of sample-
interval matrix T. The original lattice generating matrix A
is unnecessary, and all parallels the usual 1D case with as-
tonishing elegance.

Conventional sample placement. The conventional data-
converter interface to a linear array uses the spacetime sam-
ples shown in Fig. 1 and is characterized by the sample-
interval matrix T of (2). The spectral-period matrix becomes

∆f =

(
1
d û 0
0 1

cT

)
,

and results in the spectral-replication lattice shown in Fig. 2.
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Figure 5: Nyquist zone m (hatched) for m=1, . . . , 4 splits into
two nontouching regions for m > 1 and tiles the plane with
offsets from a checkerboard spectral-replication lattice that in-
cludes the the central column of dots and the two columns of
dots labeled m. Nyquist zone 1 represents lowpass sampling
and was discussed in Figs. 1–4 and Table 1. The other Nyquist
zones represent bandpass sampling.

Nyquist zones. The hatched rectangle at the center in Fig. 2
can be taken as one period of the transform. The plane is
precisely tiled by offsetting this period region by the points
of the spectral-replication lattice, and the transform behaves
identically on each tile. In lattice theory a single tile is a
fundamental volume of the lattice [1]. In DSP it is a Ny-
quist zone. The shape of the fundamental volume or Nyquist
zone is not unique, as Dutch artist M.C. Escher so elegantly
demonstrated by tiling planes with interlacing birds and fish
(typically each of his fundamental volumes comprised two or
more animals), and a Nyquist zone need not contain the ori-
gin and need not even be simply connected. Let us designate
the hatched region in Fig. 2 as the first of many standard Ny-
quist zones. If a signal on continuous 4D variable t contains
spectral components only inside a single Nyquist zone, it can
be represented in sampled form exactly, without aliasing.

Propagation and the Helmholz cone. A receive array sam-
ples far-field plane waves in time and space, and a transmit
array creates far-field plane waves from its input samples.
(We “factor out” the element pattern.) The Fourier integral∫

E(f ) e j2πfTt
df ,

in 4D describes the electric field as a plane-wave sum when
complex 3D vector E(f ) is DC-free, orthogonal to wavenum-
ber−k, and supported only in {(k, f/c) : ‖k‖ ≤ |f |/c}, the
Helmholz cone [3] that relates temporal frequency f to physi-
cal wavelength 1/‖k‖ for propagating plane wave e j2πfTt =
e j2π(ft+k·x). The Helmholz cone is the area within 45◦ of
the vertical axis in Fig. 2, where the assuming λ/2 array-
element spacing at the upper band edge sets d = cT . A re-
ceive array’s far-field input has no components outside the
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Figure 6: Frequency conversion can be used between the el-
ements and bandpass-sampling data conversion. The Nyquist
zone (hatched) has its vertical extent set at IF to effect band-
pass sampling but has its width determined at RF—the band is
arbitrary—to match the Helmholz cone. Element spacing be-
comes λ/4 at fRF , the center of the Nyquist band RF referred
to RF. The per-element sample rate is fs = 1

2T
.

Helmholz cone, and a transmit array cannot create such com-
ponents. Physics puts a 4D “Helmholz-pass filter” between
the array and the far field, so points outside the Helmholz
cone are of no use in an array transmitter or receiver’s Ny-
quist zone. Half of the first Nyquist zone in Fig. 2 is outside
the Helmholz cone and useless.

A butterfly in the Helmholz cone: ping-pong sample times.
The shape of the first Nyquist zone will be better matched to
the Helmholz cone if the sample-location lattice of Fig. 1 is
replaced with the half-density sublattice shown in Fig. 3. The
sample-interval and spectral-period matrices

T =
(

dû 0
d 2cT

)
∆f =

(
1
d û −1

2cT

0 1
2cT

)

result in ∆fT T = I and, again along with d = cT , replace
the Fig. 2 spectral-replication lattice with the Fig. 4 double-
density superlattice. Back and forth, “ping-pong” sample
times alternating between even- and odd numbered array el-
ements are created by a checkerboard sample-location lattice
in spacetime. A checkerboard spectral-replication lattice re-
sults and nicely tiles the plane with translations of a Nyquist
zone that is the Helmholz cone truncated to a butterfly.

First Nyquist zone: sample-rate requirement halved. Ta-
ble 1 compares the two approaches. Given a signal band
they require identical element spacing, but ping-pong sam-
ple times halve the per-element sample rate fs. The usual
3 dB white-noise advantage of 2 × oversampling is lost, as
digital filtering can no longer remove quantization noise and
receiver front-end noise that falls outside the Helmholz cone.
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Bandpass sampling: other Nyquist zones. Figure 5 shows
the first Nyquist zone and three alternative Nyquist zones in
the Helmholz cone for ping-pong sampling times. A signal
band in the first Nyquist zone is lowpass sampling because
f there approaches DC arbitrarily closely. Using a Nyquist
zone bounded away from f = 0 as the signal band yields
bandpass sampling. Tiling the plane with the wider Nyquist
zones requires stretching the spectral-replication lattice hor-
izontally by decreasing element spacing d. (The relationship
between d and lattice points remains as in Fig. 4.)

Frequency conversion. Analog frequency conversion in ei-
ther direction can be used in either a transmit or receive sys-
tem as illustrated in Fig. 6. The Nyquist-zone idea applies
at IF, where data conversion is done, so the IF band must lie
between successive integral multiples of per-channel sample
rate fs = 1

2T . After the width of the Nyquist zone is fixed at
RF to exactly span the Helmholz cone, the horizontal scale of
the spectral-replication lattice is set, by fixing element spac-
ing d, for correct tiling of the plane. Ultimately, element
spacing d = λ/4 at the center fRF of the RF band. These
design rules apply to the ping-pong configurations of Figs. 4
and 5 if the RF and IF bands are taken as identical.

Adding ∆Σ noise bands. The Nyquist zone in any ∆Σ
system must include significant spectral space for noise. In
spacetime ∆Σ D/A conversion [4] that noise is then removed
by analog filtering and the array’s Helmholtz-pass filtering.
Decreasing d to spread the spectral-replication lattice hori-
zontally as in Fig. 7 can create an arbitrary-width noise band.

Guard bands for beam design. The bands labeled “noise”
in Fig. 7 can be used as guard bands instead when a little ex-
tra Nyquist-zone width is desired to permit a pattern beam at
one (spatial) edge of the signal band from unduly influencing
the sidelobes at the other end through periodic replication.

3 SUMMARY

When a transmitter or receiver uses an array of linearly spaced
antenna elements and uses sampled-data signal paths for in-
dividual elements, only even-numbered samples are actually
needed for even-numbered array elements, and only odd-
numbered samples are needed for odd-numbered array ele-
ments. This ping-pong alternation of the sample instants for
even- and odd-numbered array elements lowers the required
per-channel sample rate by half.

The ping-pong Nyquist rule is simple. If fs denotes the
per-element sample rate, the mth Nyquist band in the part
of the system, RF or IF, where data conversion to or from
analog takes place extends from (m−1)fs to mfs, with in-
teger m≥1. If fRF denotes the RF frequency corresponding
via any analog frequency conversion used to the center of
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Figure 7: Reduced element spacing d here extends the second
Nyquist zone beyond the Helmholz cone, creating a noise band
for use by a spacetime ∆Σ modulator. One spectral copy from
the tiling of the plane is shown.

this Nyquist band, the array-element spacing must be at least
λRF /4, where λRF = c/fRF . When m = 1, the lowpass-
sampling case, no element-density penalty is incurred as this
is just the usual half-wavelength element spacing at the upper
sampling-band edge mfs after referral to RF. In the m > 1
bandpass-sampling cases the cost in increased element den-
sity is less than a factor of two.

Fundamentally, the sample-rate savings accrues by eli-
mation of a redundancy implicit in the shape of the Nyquist
regions associated with conventional sample timing. Con-
ventional systems are needlessly capable of representing spec-
tral components that do not correspond to propagating plane
waves because they do not satisfy the ‖k‖ ≤ |f |/c Helmholz
relation between wavenumber −k and temporal frequency
f . The ping-pong sample times allow the Nyquist region
repliced spectrally to be chosen to include only components
satisfying the Helmholz relation, thus eliminating the redun-
dancy.
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