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ABSTRACT

We propose an equalization algorithm that employs multiple
decision-feedback equalizers (DFE)s operating in different
directions and arbitration among the outputs of these equal-
izers to mitigate the effects of two-dimensional intersym-
bol interference (ISI). The multi-directional arbitrated DFE
(MAD) exploits directional diversity to reduce the effects
of error-propagation while maintaining complexity on the
same order as a DFE. Simulation results show that, when
four DFEs are used, the MAD algorithm can achieve sub-
stantial gains over a single DFE, including gains of over 10
dB at 102 BER for simulations in this paper.

1. INTRODUCTION

Like their one-dimensional (1D) counterparts, systems that
suffer from two-dimensional (2D) intersymbol interferece
(ISI) require equalization to mitigate the effects of ISI. Much
of the previous research in 2D equalization studies exten-
sions of 1D algorithms. Several of these extensions ap-
proach the problem of 2D equalization as two independent
1D problems, performing equalization first in one direction
and then in the other [1, 2]. If the 2D ISI channel is separa-
ble, i.e. can be written as a 1D convolution in one dimension
followed by a 1D convolution in the other dimension, then
such an approach may be reasonable. For channels that are
not separable, however, such methods ignore a subset of the
IST present and will likely suffer performance degradation
with respect to 2D linear methods as a result. They will
always be inferior to methods that do not process the data
separably. For example, the maximum likelihood solution
cannot be performed in a separable manner even when the
channel is separable.
Extensions of linear minimum mean square error

(MMSE) equalization to 2D channels [3, 4], methods based
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on the Viterbi algorithm [5, 6], as well as iterative meth-
ods for joint equalization and decoding [7] and for equaliza-
tion alone [8] have all been applied to the 2D channel. The
2D equalization algorithms closest to the work in this paper
are those that incorporate elements of the decision feedback
equalizer (DFE). The standard DFE employs two filters to
mitigate the effects of ISI. The feedforward filter accepts re-
ceived data from the channel as input and attempts to cancel
precursor (anticausal) ISI. The feedback filter receives hard
estimates of previous symbols as input and attempts to re-
move residual postcursor (strictly causal) ISI. Heanue, et al.
[9] propose using the Viterbi algorithm along rows of the
received array and estimates of symbols in previous rows
to subtract their contributions. Neifeld, et al. [10] propose
an extension of the 2D MMSE equalizer based on parallel
iterative DFEs.

We present an algorithm that employs DFEs operating
on multiple paths through the array of received data (scans).
The algorithm then arbitrates among the outputs of these
DFEs. This technique, which we refer to as the MAD (multi-
directional arbitrated DFE) algorithm, is an extension of
the bi-directional arbitrated DFE (BAD), which was devel-
oped for low-complexity equalization of 1D ISI channels
[11, 12]. Decision feedback equalization suffers from error
propagation. By performing decision feedback equalization
in two directions and arbitrating between the resulting esti-
mates, the BAD algorithm exploits time diversity and hence
decorrelated error propagation effects to reduce these detri-
mental effects. The same benefits apply when such an ap-
proach is used for 2D equalization. In fact, because of its
array structure, the 2D problem allows for a larger variety
of equalization directions; while the DFE is essentially re-
stricted to traveling only forward or backward through the
vector of received data from a 1D channel, the DFE can fol-
low any number of scans through a 2D array.

The remainder of the paper is organized as follows. We
first present our system model. We then describe the three
stages of the MAD algorithm: multi-directional process-
ing, reconstruction, and arbitration. We present its perfor-
mance on representative channels and explore the perfor-
mance improvement achieved by arbitrating among the out-
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puts of four DFEs rather than two. We also examine the
peformance of the MAD algorithm when applied to optical
storage.

2. SYSTEM MODEL

Consider linear modulation over a real baseband, discrete-
time, symbol-spaced two-dimensional channel {A[z, j]},
where —u < ¢ < dand —[ < 5 < r. Data is transmitted in
N x M arrays, {b[n,m]}, and the channel is corrupted by
additive white Gaussian noise (AWGN). The channel output
atindex [n, m] is given by

d r
y[n,m] = Z Z hli, j]bln — i,m — j] + wn,m],

i=—uj=—I

where {w([n, m|} are i.i.d. AWGN samples with variance
0% = Np/2. It is assumed that the noise variance and the
channel response are known to the receiver. In the simula-
tions and discussions presented in this paper, we consider
a binary phase shift keying (b[n,m] € {—1,1}) modula-
tion scheme. However, the MAD algorithm can be easily
extended to larger symbol alphabets.

3. THE MAD ALGORITHM

Like the original 1D algorithm, the MAD algorithm con-
sists of three stages: multi-directional processing, recon-
struction, and arbitration. In the multi-directional process-
ing stage, the array of received data is passed through mul-
tiple DFEs, each moving along a different scan. Though
the structure of the data allows flexibility in choosing many
paths, it also complicates the design of the DFE filters, since
the ISI to be cancelled results from a 2D region of symbols
around the symbol to be estimated, not just those to the right
and left, and the notion of which interfering symbols are
precursor and which are postcursor is dictated by the scan
direction. Note that the samples and symbol estimates fed to
the feedforward and feedback filters will not lie along a sin-
gle row or column of the array. Rather, they will be drawn
from a 2D region surrounding the symbol to be estimated.

For our simulation and discussion, we employ four DFEs.

The first DFE moves from left to right along each row, be-
ginning with the top row of the array and ending with the
bottom. Hence, estimates of the symbols in rows above the
current row and in the current row to the left of the current
symbol have been generated and can be passed to the feed-
back filter. Symbols to the right of the current symbol in
the same row and anywhere in the rows below have not yet
been estimated, and hence their contributions to the current
symbol are considered precursor ISI. The second DFE also
operates along rows of the array, but it moves from right to
left along each row and starts with the bottom row and ends

with the top. Hence, symbols that contributed postcursor ISI
when viewed by the first DFE contribute precursor ISI when
viewed by the second DFE. Error propagation thus occurs in
different directions in the two DFEs and can be reduced via
arbitration. The third and fourth DFEs move along columns
of the received array; the third moves from the top to the
bottom of each column, starting with the leftmost column
and moving to the rightmost. The fourth moves from the
bottom to the top of each column, starting at the right and
working to the left.

Though there are many possible scans, the four paths de-
scribed above have two advantages. First, because any par-
ticular DFE is always moving in the same direction along
rows or columns, the elements of the 2D channel that ap-
pear as causal and anticausal are the same for each symbol;
hence, the DFE filter taps are invariant throughout the array
(ignoring edge cases). If we chose a path that reversed di-
rection at the end of each row, for example, the filter taps
would no longer be constant (unless the channel were sym-
metric). Second, the paths of the second, third, and fourth
equalizers can be viewed as equivalent to that of the first by
a combination of transposing the array and flipping its ele-
ments column-wise and row-wise. Hence, the same proce-
dure can be used to design the filter coefficients for all four
DFEs simply by making the appropriate transposes and flips
to the channel matrix when the filter taps are computed and
to the received data when the DFE is implemented.

In the reconstruction stage of the MAD algorithm, the
array of symbol estimates generated by each DFE is con-
volved with the channel to produce a noise-free estimate
of the received array of samples. These four estimates of
the received array serve as candidates in the arbitration pro-
cess, which is the final stage. If the estimates of a particular
symbol b[n, m] generated by the four DFEs do not agree,
arbitration is employed to determine the final output. Since
the noise is Gaussian, the MAD algorithm uses Euclidean
distance as a metric to choose among the candidate symbol
estimates. The Euclidean distance between each noise-free
estimate of the received array and the actual received array
is computed over a window around the bit to be estimated
as

W, Wy
whoml =Y Y rlntismetjl—fklnti, me )
=W j=—Ws

for k = 1,2,3,4, where W1, W2, W3, and W4 define the
window. The final estimate of b[n, m] is taken from the DFE
for which 7k [n,m] is smallest.

4. RESULTS AND DISCUSSION

We first consider the performance of the MAD algorithm
for optical storage. The optical storage channel (or point-
spread function) is typically modeled as a symmetric 2D
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Gaussian. We consider such a Gaussian channel with vari-
ance o7 = 0.55 and approximate it by a 3 x 3 discrete-time
channel, normalized to have unit energy. For each DFE, we
use a feedforward filter of length 6 (2 causal taps and 4 anti-
causal taps) and a strictly causal feedback filter of length 4.
Consider the first DFE, which operates from left to right on
each row, starting at the top of the received array. For the
estimation of symbol b[n, m|, the feedforward filter takes as
input the vector of received samples

[yn,m—l Yn,m Yn,m+1 Ynt+i,m—-1 Yn+im yn+1,m+1}-

The feedback filter takes as input the vector of symbol esti-
mates

|:bn,m—1 bn—l,m—i—l bn—l,m bn—l,m—l]-

The inputs to the feedforward and feedback filters of the
other three DFEs are chosen similarly with respect to their
scans. Any inputs to the filters that lie outside the received
data and symbol estimate arrays are assumed to be 0. For
arbitration, we use a window of size 3 x 3 centered on the
symbol to be estimated.

One hundred arrays of size 100 x 100 were were passed
through the channel and processed by the MAD receiver.
Figure 1 shows the resulting bit error rate (BER) for E', /Ny
between 5 and 25 dB. In order to explore the benefit gained
by using four arbitration candidates, we present the results
of arbitration between the outputs of only the two row-wise
DFEs and only the two column-wise DFEs, as well as among
all four DFE outputs. In addition, we plot the BER at the
output of each individual DFE prior to any arbitration.

- DFE1
—— DFE 2

—— DFE 3

10°L. | 4 DFE4

—©— Row Arbitration
—&— Column Arbitration
—— MAD Algorithm

Bit Error Rate

10_4 L L L
15 20 25
E/N, (dB)

Fig. 1. Performance of the MAD algorithm on the optical
storage channel. The four standard DFEs give identical re-
sults, as do the row-wise and the column-wise arbitration.

Because the channel is symmetric, the four DFEs oper-
ating in different directions see the same channel (i.e. the

same channel elements correspond to pre- and post-cursor
ISI). As would be expected, the BER achieved by the four
DFE:s is identical for this channel. Arbitration between only
the two row-wise DFEs or only the two column-wise DFEs
yields a gain of 1.5 to 6 dB. Arbitration among all four
candidate sequences, however, yields a gain of up to 7 dB
over a single DFE and up to 2 dB over arbitration between
only two candidates, confirming the benefits of incorporat-
ing more arbitration candidates.

Another parameter of interest in the MAD algorithm is
the size of the arbitration window. Figure 2 shows the BER
achieved by the MAD algorithm (arbitrating among all four
DFE outputs) on the optical storage channel for windows of
sizel x 1,3 x 3,5 x5, and 11 x 11. The results reveal
that the performance of MAD improves significantly (up to
4 dB) as the window size increases to 3 X 3 and remains
essentially constant as the window size increases to 5 x 5.
The performance degrades somewhat (up to 2 dB), however,
for the largest window size considered. This likely indicates
that, as the window grows beyond a certain size, the amount
of additive noise included in the distance metric increases
significantly, but information about the transmitted symbol
of interest does not. Hence, selecting an appropriate arbitra-
tion window size is important for achieving the best possible
performance from the MAD algorithm.
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Bit Error Rate

-3 - 1x1
—+— 3x3
—-©- 5x5
—— 11x11

15 20 25
E,/N, (dB)

Fig. 2. Effect of arbitration window size on performance of
the MAD algorithm. The 3 x 3 and 5 X 5 windows give
nearly identical performance.

We also consider the performance of the MAD receiver
on an asymmetric channel given by

—.1599 .1064 4397
h=| —4239 —-.6158 —.0139
.0463 .4403 .1209

All other parameters are the same as those used to generate
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the results in Figure 1. When the channel is asymmetric, it
appears differently to each of the DFEs. The elements of h
that contribute postcursor ISI in the view of the first DFE,
for example, will contribute precursor ISI in the view of the
second DFE. Hence, as Figure 3 shows, the four DFEs now
give somewhat different BER values. When arbitration oc-
curs between the outputs of only two DFEs (both row-wise
DFE:s or both column-wise DFEs), a gain of 1.5 to 9 dB over
the best-performing single DFE is achieved. When arbitra-
tion among all four DFE outputs is performed, an additional
gain of 1.5 to 7 dB can been seen, yielding overall gains of
up to 13 dB. These results indicate that, by allowing for the
generation of more than two arbitration candidates, the 2D
extension of the BAD algorithm yields significant perfor-
mance gains even beyond its 1D counterpart.

Bit Error Rate
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—©— Row Arbitration
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—%— MAD Algorithm

0 10 15 20 25
E/N, (dB)

Fig. 3. Performance of the MAD Algorithm on an asym-

metric channel.

5. CONCLUSION

We have presented an algorithm for 2D equalization that
employs multi-directional DFEs. Based on the 1D BAD
algorithm, the MAD algorithm processes the data array in
several directions and arbitrates among the resulting bit es-
timates, using Euclidean distance as a metric. Simulation
results show that the inclusion of four candidates for arbi-
tration, allowed by the 2D channel and data structure, yields
significant performance gains above both a standard DFE
and an arbitration algorithm using only two candidates, es-
pecially for the asymmetric channel. The MAD algorithm
maintains complexity on the same order as that of the stan-
dard DFE while yielding gains of up to 13 dB over the
conventional structure, thus making it an attractive receiver
choice for systems requiring low-complexity ISI mitigation.
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