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ABSTRACT

Burst mode receivers are key components of optical transmission
systems and have received much attention in recent years. We
present new efficient methods for burst optical signal detection and
blind channel estimation in burst-mode data transmission based on
a modified K-means clustering technique. A data-aided feedfor-
ward symbol timing recovery method is also developed, based on
polynomial interpolation and maximum likelihood estimation the-
ory. It can be implemented rapidly and efficiently; therefore, it is
suitable for burst mode receivers. A performance criterion of this
method has also been derived. We also give some numerical ex-
amples to demonstrate the performance of the proposed methods.

1. INTRODUCTION

As high-speed optical communications develop rapidly, the burst-
mode data transmission system in passive optical networks (PONs)
have been investigated extensively. A very significant feature of
this burst-mode data transmission is that due to unequal distances
between central office and optical network units (ONUs), optical
signal attenuation in PONs is not the same for each ONU. The am-
plitude of the received signals at the optical line terminal (OLT)
will be different for each ONU. Therefore, conventional signal de-
tection methods are not suitable for burst-mode data transmission
because they cannot handle the different arriving frames with large
difference in optical power level alignment.

Recently, signal detection methods in burst-mode receivers
have received much attention [1]. Most of these detection meth-
ods are implemented using analog or hybrid analog-digital tech-
nologies, for example, peak detection circuites will be used in the
receiver. In this paper, we present a new efficient burst-mode sig-
nal detection method based on a modified K-means data cluster-
ing technique. Data clustering plays an important role in pattern
recognition and many other fields. Lately, data clustering, espe-
cially the K-means clustering technique, has also been applied to
digital communications. Since the K-means clustering method is
efficient and has low computation complexity, it is suitable for ap-
plications where high processing speed is need.

The task of acquiring timing synchronization is another impor-
tant problem in burst-mode receiver. In burst-mode data transmis-
sion, synchronization of all relevant parameters must be performed
very quickly, normally within a limited period of time at the start of
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each data-burst. However, conventional synchronization methods
are usually accomplished using feedback schemes which lead to
long acquisition time [2], [8]. Hence, feedforward synchronizers
are particularly well suited for burst-mode data transmission sys-
tems. But conventional feedforward timing recovery techniques
are based on some assumptions of the statistical distribution of re-
ceived signals and their implementation is very computationally
complex [2].

Recently, polynomial interpolation has been introduced as a
simple and efficient method to implement symbol timing recov-
eries. Some interpolation based synchronization methods are pre-
sented [3], [4]. However, these methods are either suitable only for
the situation where the over-sampling ratio is two, or require high
sampling frequency to obtain the acceptable synchronization per-
formance, which is difficult to realize in high-speed optical com-
munication systems. Besides these, theoretical performance anal-
ysis of these methods have not been investigated. In this paper,
we present a more general interpolation-based feedforward sym-
bol timing recovery method. We also derive a performance crite-
rion for this type of synchronizer, in which the errors caused by the
interpolation approximation are considered. The proposed method
is efficient, performed quickly and very suitable for burst-mode
data transmission.

2. BURST OPTICAL SIGNAL DETECTION

We present a new signal detection approach and channel estima-
tion in the burst optical signal transmission, based on a modified
K-means clustering algorithm.

2.1. Modified K-means Clustering Detection Method

A typical burst optical signal is in the form of a frame with a num-
ber of binary signals. Each binary signal is transmitted in the form
of very short pulses with power level A0 or A1, corresponding
to binary 0 or 1 respectively. However, the power levels A0 and
A1 may vary slowly from bit to bit with the laser’s temperature.
Also considering the nonlinear amplification at the receiver, we
cannot rely on knowledge of these power levels to design the re-
ceiver. Under such situations, we propose the following received
signal mode, in which the power levels A0 and A1 are modelled
as Gaussian random variables with the same variance and different
means. Both variance and mean are unknown at the receiver.

First, we assume there is no intersymbol interference and each
pulse is sampled at the optimal sampling instant. Then the received
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signal model is

yn = xn + wn, n = 1, 2, . . . , N (1)

where xn’s are independent distributed Gaussian random variables
with mean µn and variable σ2

A. Here µn is either µ0 or µ1, cor-
responding to A0 or A1 respectively; wn is a zero mean white
Gaussian noise with variance σ2

w. Therefore, the burst-mode sig-
nal detection problem can be considered as the following binary
hypothesis test:

H0 : yn ∼ N (µ0, σ2
A + σ2

w)
H1 : yn ∼ N (µ1, σ2

A + σ2
w)

(2)

According to the above received signal model and hypotheses,
there will be two clusters centered at µ0 and µ1 in the distribu-
tion of the received signals. Therefore, we can implement the data
clustering method to divide the received signals into two clusters
corresponding to the binary values 0 and 1 respectively.

The most commonly used clustering strategy is based on the
squared-error criterion. However, this criterion does not coincide
with the minimizing bit error rate (BER) criterion in the burst sig-
nal detection. The reason is that the squared-error criterion gives
equal weight to every within-cluster variation of each cluster. But
in the burst-data transmission, in each burst the probabilities of
sending binary 0 or 1 are not the same. Hence, the weights of
within-cluster variations have to be different. To overcome the
performance degradation caused by this problem, in our proposed
method we modify the conventional K-means clustering to obtain a
new clustering algorithm. The essential point of this new method
is to give different weights to the within-cluster variations in the
squared-error criterion to make it equivalent to the minimizing the
BER criterion.

Since the burst signal detection is a one-dimension clustering
problem, the K-means algorithm can be simplified to find an opti-
mal threshold τopt to partition the received data into two clusters
corresponding to binary 0 and 1. For the binary hypothesis test in
(2), the optimal threshold that minimizes the BER is

τopt =
µ0 + µ1

2
+

σ2

µ1 − µ0
ln

p0

p1
(3)

where p0 and p1 are the prior probability of transmitting binary
0 and 1, see [5]. Therefore, in our modified algorithm we use
this threshold to replace the threshold used in the conventional
K-means which is just the average of the centers of all clusters.
However, the parameters {µ0, µ1, p0, p1, σ

2} are unknown at the
receiver. By considering that the K-means clustering algorithm is
iterative, we can use the clustering results of the previous iteration
to estimate these unknown parameters and use these estimations to
update the threshold in the current iteration.

The algorithm is described by the following procedure: let
Y = {y1, . . . , yN} denote the received data to be clustered. Sup-
pose at the mth iteration we obtain the partition results S0m and
S1m, which are the subsets of Y corresponding to the binary 0 and
1. Let the number of data in S0m and S1m be n0m and n1m. Then
at the (m + 1)th iteration, we update the threshold to be

τm+1 =
µ̂0m + µ̂1m

2
+

σ̂2
m

µ̂1m − µ̂0m
ln

p̂0m

p̂1m
. (4)

In the above updated threshold, the unknown parameters are esti-
mated by applying the partition results in the mth iteration into the

following formulas:

p̂0m = n0m/N, p̂1m = n1m/N

µ̂0m =
∑

n∈S0m
yn/n0m, µ̂1m =

∑
n∈S1m

yn/n1m

σ̂2
m =

∑
n∈S0m

(yn − µ̂0m)2 +
∑

n∈S1m
(yn − µ̂1m)2

N − 1
This algorithm is terminated when there is no reassignment of
any data from one cluster to another or the modified squared-error
ceases to decrease significantly after an iteration.

2.2. Blind Channel Estimation in the Presence of ISI

The burst-mode data transmission in PON is often impaired by
channel intersymbol interference (ISI). Since in the burst-mode
data transmission in PON, the ISI is mainly from the effect of
the nearest previous symbol, in this paper we use a first-order
ISI channel model. Assume that the characteristics of the chan-
nel vary slowly, we have the following ISI channel model for the
burst-mode data transmission:

yn = xn + bxn−1 + wn, (5)

where b is the ISI parameter assumed unknown deterministic. In
conventional detection methods in the presence of ISI, we need to
estimate the channel parameters by using training data and then
implement an equalizer to remove the ISI according to the esti-
mated parameters. However, in the burst-mode data transmission
the header of the burst is very short in order to increase efficiency.
This implies that using a training sequence to estimate the channel
is very difficult to realize. In the following, we present a new blind
channel estimation method which is based on the above modified
K-means clustering algorithm

In the ISI channel model (5), when we consider all possible
values for the mean of the random variables xn and xn−1, we
can conclude that the detection problem based on this ISI channel
model is a four-hypothesis test:

H0 : yn ∼ N (µ00, σ2) H2 : yn ∼ N (µ10, σ2)
H1 : yn ∼ N (µ01, σ2) H3 : yn ∼ N (µ11, σ2)

(6)

where µij = µi + bµj , i, j = 0, 1 and σ2 = (1 + b2)σ2
A + σ2

w.
Therefore, the distribution of the received data contains four clus-
ters with centers µij , i, j = 0, 1, respectively. However, if we de-
tect the transmitted binary signal by directly using the above pro-
posed modified K-means clustering algorithm, the detection per-
formance will be very poor. The reason is the effect of ISI makes
the cluster centers µ01 and µ10 very close with each other. There-
fore, its BER will be much larger than the BER when using train-
ing sequence and linear equalizer to remove the ISI.

Considering this point, in the proposed blind estimation method,
first we still use the modified K-means algorithm to partition the
received data into four clusters. Then, instead of using a long train-
ing sequence to estimate µij , i, j = 0, 1, we use the centers of
each cluster as their estimate. According to the relationships be-
tween µij and the parameters {µi, µj , b}, we have the following
equations:

µ̂ij = µi + bµj , i, j = 0, 1. (7)

where µ̂ij is the estimation of real µij . Since b, µ0 and µ1 are
all unknown parameters, the above equations are nonlinear. We
will use numerical methods to solve this nonlinear system in the
sense of the least square and obtain the estimation of the ISI pa-
rameter b. Using the resulting estimate, we can remove the ISI by
implementing a linear equalizer.
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3. SYMBOL TIMING RECOVERY

We present a data-aided feedforward symbol timing recovery method
based on interpolation, which is implemented efficiently and rapidly
and thus suitable for the burst-mode data transmission.

3.1. Interpolation-Based Symbol Timing Recovery

The proposed method for symbol timing recovery is represented
in the Fig. 1. The basic idea is as follows. The data, after be-
ing sampled by a free-running sampling clock, passes through an
interpolator to form a polynomial approximation of the matched
filtered signal and then maximum likelihood estimation is applied
to this approximated signal. By using this interpolation approx-
imation, we obtain an analytical form of the likelihood function.
Hence, numerical methods can be used to calculate the estimation
of the synchronization parameters. Therefore, a tracking loop that
leads to the long acquisition time is not needed [2], [8].

Fig. 1. Receiver with non-synchronized sampling and interpolator.

As shown in Fig. 1, the received baseband signal after pass-
ing through the matched filter is sampled using the over-sampling
ratio of β = T/Ts, where T and Ts are the symbol and sam-
pling intervals respectively. In the digital part of the receiver, the
synchronization parameters mk and µk is estimated. For conve-
nience, we assume that the sampling rate is an integer multiple of
the symbol rate and the sampling rate at the output of the inter-
polator is equal to the symbol rate. Under these assumptions, the
over-sampling ratio β is an integer and the fractional interval µk is
a constant, i.e., µk = µ.

Fig. 2. Sample time relations.

Denote the impulse response of the analog interpolating filter
as hI(t). Then the continuous-time output of the filter is

y(t) =
∑
m

x(m)hI(t − mTs). (8)

Define a filter index i = int [(kT + τ)/Ts] − m, where int[z]
means the largest integer not exceeding z. Also define a basepoint
index mk = int [(kT + τ)/Ts] and a fractional interval µk =
(kT + τ)/Ts − mk. These time relationships are illustrated in
Fig. 2. Now resample the continuous-time output of the filter at
the time instants t = kT + τ , where τ is the time delay between
this resampling and the original free-running sampling, and apply

the above definitions, the interpolants can be computed from

y(kT + τ) =

i2∑
i=i1

x(mk − i)

L∑
l=0

bl(i)µ
l
k =

L∑
l=0

µl
kvl(mk) (9)

where vl(mk) =
∑i2

i=i1
bl(i)x(mk − i), bl(i) are the interpola-

tor coefficients which are determined solely by the filter’s impulse
response hI(t). Here we use the classical Lagrange polynomial
interpolating filter.

Therefore, when we vary mk from kβ to (k + 1)β − 1 and
vary µk from 0 to 1 continuously for each mk, the output of the
interpolation filter y(kT + τ) forms a polynomial approximation
for the continuous-time signal x(t), which is the output of matched
filter, in the interval kT ≤ t < (k + 1)T .

From [8], we know that in order to estimate the synchroniza-
tion parameter using maximum-likelihood method, the log-likelihood
function is

Λ(τ) = CL

∑
n

Inxn(τ) (10)

where CL is a constant, In’s are the transmitted binary digits and
xn(τ) is the output of the matched filter. Since in (9) we already
use the interpolation to obtain a polynomial approximation of the
output signal of the matched filter, by substituting this approxi-
mation into (10) we achieve the polynomial approximation of the
log-likelihood function as

Λ((mk + µ)Ts) = CL

L∑
l=0

µl
∑

n

Invl(mk). (11)

Hence, the synchronization parameters can be estimated as:

{m̂k, µ̂} = arg max
{mk, µ}

{Λ((mk + µ)Ts)} , (12)

and the value of the output at the desired time instant kT + τ is
determined by equation (9).

3.2. Performance Characteristics

The Cramèr-Rao bound (CRB) for an unbiased estimate of an un-
known synchronization parameter τ is defined as

σ2
τ = E{[τ̂(y) − τ ]2} ≥ 1

E
{[

∂
∂τ

ln p(y|τ)
]2} . (13)

This lower bound is very useful for analyzing the performance of
parameter estimates. However, in the proposed new maximum-
likelihood estimator, we use the Lagrange interpolation to form an
approximation of the received matched filtered signal. Hence the
conventional CRB for the estimate of synchronization parameter τ ,
as derived in [8], cannot be used as a criterion for the performance
analysis. The error caused by the interpolation should be included
in the CRB of this new maximum-likelihood method.

The error of the Lagrange interpolation polynomial is studied
by Henrici in his book [6]. Some further research results can be
found in [7]. The main results for the Lagrange interpolation error
is concluded in the following theorem.

Theorem 3.1 Let the real function f be defined on an interval
I , and let x0, x1, . . . , xN be N + 1 distinct points of I . Let P
represents the N th order Lagrange interpolation polynomial of f
and let f be N +1 times continuously differentiable on the interval
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I . Then to each x ∈ I there exists a point ξx located in the smallest
interval containing the points x, x0, x1, . . . , xN such that

f(x) − P (x) =
1

(N + 1)!
L(x)f (N+1)(ξx) (14)

where
L(x) = (x − x0)(x − x1) . . . (x − xN ).

The quantity f (N+1)(ξx) in (14) can be defined as a continuous
function of x for x ∈ I .

By applying the above theorem to the new method, we con-
clude that the proposed method could be considered as a con-
ventional maximum-likelihood estimation under a different signal
model such that the output of the matched filter in this new model
is the same as the Lagrange interpolation polynomial approxima-
tion. Therefore, we can directly replace xn(τ) in (10) with the
Lagrange interpolation polynomial formula in (14) and obtain the
CRB of the proposed new maximum-likelihood estimator as

σ2
τ ≥ 1

E
{[

∂
∂τ

CL

∑
n (Inxn(τ) − InΓ(τ))

]2} , (15)

where

Γ(τ) =
1

(N + 1)!
L(τ)x(N+1)

n (ξτ ).

4. NUMERICAL EXAMPLES

In this section, we use some numerical examples to investigate
the performance of the proposed methods. In the first experiment,
we simulate the optical signal detection method in the presence of
ISI in the channel, as we presented in section 2. We compare the
BER of the detection method based on the proposed blind channel
estimation with the results when using a long training sequence.
The above results are also compared with the performance of an
alternative blind detection method that uses directly the modified
K-means clustering to find the detection threshold. The results are
shown in Fig. 3. We observe that the performance of the proposed
blind estimation method is nearly the same as the method when
using a long training sequence and is much better than the method
that directly uses the modified K-means method. This is so since
the proposed method takes full advantage of the information pro-
vided by the ISI channel model.

In the next experiment, we analyze the performance of the
proposed data-aided interpolation based symbol timing recovery
method with a different over-sampling ratio β. As shown in Fig. 4,
increasing the over-sampling ratio will increase the detection per-
formance. We also observe that even we use the low over-sampling
ratio like β = 2, the BER is still close to the theoretical results.
This point is very important for burst-mode data transmission in
PON, where high over-sampling ratio is difficult to implement.

5. CONCLUSIONS

We investigated the burst optical signal detection and symbol tim-
ing recovery in burst-mode data transmission in passive optical
networks. We proposed a new modified K-means clustering based
detection and a blind channel estimation methods. These methods
are implemented efficiently and suitable for the burst transmission
in PON. For the symbol timing recovery, we proposed an interpo-
lation based data-aided feedforward timing recovery scheme. By

Fig. 3. Performance of the blind channel estimation.

Fig. 4. Performance dependence on over-sampling rate.

using a feedforward approach instead of the feedback loop, we
achieve a very fast synchronizer. This is very important and neces-
sary for burst-mode data transmission in PON. We also derived a
performance criterion for the proposed method, in which the errors
caused by the interpolation approximation are considered. In the
future work, we will study the performance of the proposed optical
signal detection method analytically, especially its convergence.
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