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ABSTRACT

In this paper, we propose a new blind multiuser receiver which
is robust against the effects of erroneously presumed desired user
signature and short data length. Our approach is based on the ex-
plicit modeling of possible mismatches in the mean-square error
cost function and worst-case performance optimization. We show
that this approach leads to a multiuser receiver which uses the data
covariance matrix with an adaptive diagonal loading. Simulation
results show performance improvements achieved by our approach
relative to existing techniques.

1. INTRODUCTION

Linear multiuser detection techniques can be classified into two
categories: training-based (non-blind) and blind algorithms. The
main drawback of training-based multiuser receivers is that they
may have quite poor performances when the length of the training
sequence is short and/or when the channel impulse response of the
desired user varies rapidly.

As an alternative, one can employ blind multiuser detection
techniques which are based entirely on the spreading code of the
desired user and do not exploit any channel impulse response in-
formation [1]. However, the performance of most of these tech-
niques may degrade substantially in scenarios with low signal-to-
noise ratios (SNRs) and short data lengths.

An effective approach to overcome the aforementioned short-
comings of multiuser detection methods is to introduce robustness
in the detection procedure. For example, robust multiuser receivers
which are based on the diagonally loaded minimum output energy
(MOE) approach have been presented in [2] and [3]. However, the
main shortcoming of these receivers is that it is not clear how to
obtain the optimal value of the diagonal loading factor. Motivated
by this drawback of the diagonal loading technique, the authors of
[4] and [5] have proposed multiuser detectors that explicitly model
an arbitrary (but norm-bounded) uncertainties in the desired user
signature and use worst-case performance optimization to improve
the robustness of the MOE receiver. However, the approach of [4]
is not suitable for on-line implementation, whereas the approach
of [5] suffers from the fact that it optimizes the lower bound of the
worst-case performance rather than the worst-case performance it-
self.

In this paper, we use the MMSE multiuser detection approach
along with the idea of worst-case performance optimization to de-
velop a new blind multiuser receiver which is robust against pos-
sible uncertainties in the mean-square error (MSE) cost function.

We show that this approach is equivalent to the diagonal loading-
based multiuser receiver with the optimal choice of the diagonal
loading factor obtained based on the known level of uncertainty in
the desired signal signature. A computationally efficient algorithm
is proposed for our robust multiuser receiver. In contrast to the al-
gorithm [4], our technique is suitable for on-line implementation.

2. DATA MODEL

Let us consider a K-user synchronous CDMA system with short
spreading codes (for which the chip sequence period coincides
with the symbol period Ts). We assume that the quasi-static chan-
nel FIR impulse response is much shorter than Ts, so that the effect
of inter-symbol-interference (ISI) can be neglected [1], [2]. How-
ever, the duration of the channel impulse response can be com-
parable to the chip period Tc, so that there can be a substantial
inter-chip-interference (ICI) [1], [3]. We also assume that user
data symbols are zero-mean independent random variables which
are equally likely drawn from the BPSK constellation.

Sampling the received data at t = nTs+pTc for p = 0, 1, . . . ,
L − 1 and using the vector notation, we obtain the following fa-
miliar model [2], [4]

x(n) =
K∑

k=1

Akbk(n)sk + v(n) (1)

where Ak is the received signal amplitude of the kth user, bk(n)
is the nth data symbol of this user, x(n) = [x(nTs), x(nTs +
Tc), . . . , x(nTs + (L − 1)Tc)]

T is the received data vector, sk =
[sk(0), sk(Tc), . . . , sk((L−1)Tc)]

T is the signature vector of the
kth user, sk(t) =

∑L−1

l=0
ck(l)gk(t− lTc) is its normalized signa-

ture waveform (
∫

Ts

|sk(t)|2dt = 1), v(n) = [v(nTs), v(nTs +

Tc), . . . , v(nTs+(L−1)Tc)]
T is the noise vector, gk(t) is the chip

waveform convolved with the kth user channel impulse response,
ck = [ck(0), ck(1), . . . , ck(L − 1)]T is the spreading code vec-
tor of this user, L is the spreading factor (i.e., Tc = Ts/L), v(t)
is the zero-mean additive random noise with the variance σ2, and
(·)T stands for the transpose. In ICI-free scenarios, gk(t) spans
only one chip, while in dispersive channels gk(t) can span several
chips and this can cause ICI.

3. CONVENTIONAL MMSE RECEIVERS

The output of a linear multiuser receiver is given by [1]

y(n) = f
H
x(n) (2)
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where f = [f0, f1, . . . , fL−1]
T is an L × 1 complex vector of the

receiver coefficients, and (·)H stands for the Hermitian transpose.
In the MMSE approach, the receiver coefficient vector f is

designed to minimize the mean-square error between the desired
user symbol and the receiver output, so that

fopt = arg min
f

E{|b1(n) − f
H
x(n)|2} (3)

where the first user is assumed to be the desired one. The optimal
vector fopt is given by the classic Wiener formula fopt = R

−1
d

where R = E{x(n)xH(n)} is the data covariance matrix, d =
E{x(n)b∗1(n)} is the correlation vector, and (·)∗ denotes the com-
plex conjugate.

Note that under the assumptions made, it is easy to show that
d = β s1 where β � A1E{|b1(n)|2}. As multiplying fopt by any
positive constant does not affect the probability of error at the out-
put of the symbol detector, we obtain another multiuser receiver,

f̃opt = R
−1

s1 (4)

The “tilde” here stresses that although (4) is equivalent in the bit
error rate (BER) performance to the MMSE receiver, the MSEs
of these receivers are different because (4) does not minimize the
MSE.

In practice, the exact knowledge of the desired user signature
s1 is often unavailable. In this case, one can use c1 instead of s1

[2]-[4]. This corresponds to the blind receiver that can be written
as

fblind = R
−1

c1 (5)

Unfortunately, the receiver (5) is very sensitive to the difference
between c1 and s1 [2]-[4].

In practice, the exact covariance matrix R is unavailable and is
replaced by its sample estimate R̂ = 1

N

∑N

n=1
x(n)xH(n) where

N is the number of data vectors in the observation period. Using
R̂, the multiuser receivers (4) and (5) can be written as

f̃opt = R̂
−1

s1 , fblind = R̂
−1

c1 (6)

In scenarios with a short data length, the performance of the mul-
tiuser receivers (6) can degrade severely [3]. To provide robustness
against short data length effects, it has been proposed in [2] and [3]
to use the so-called diagonal loading technique whose essence is
to replace R̂ by R̂ + γI where γ is the loading factor and I is the
identity matrix, that is

fdl = (R̂ + γI)−1
c1 (7)

Although the receiver (7) is known to (potentially) provide an im-
proved robustness against short data length effects and signature
mismatches, it is not clear how to choose the diagonal loading fac-
tor.

4. ROBUST MULTIUSER DETECTION

The MMSE receiver (3) assumes that d and R are exactly known.
In practice, these values are known with certain errors. Let us
consider the error e = s1 − s̃1 between the actual desired user
signature s1 and its presumed (e.g., estimated) value s̃1. Let the
error vector e be norm-bounded by some known constant ε > 0,
that is, let ‖e‖ ≤ ε, where ‖ · ‖ denotes the vector l2 norm. Then,
we obtain that d = d̃ + βe where d̃ � β s̃1 is the presumed
correlation vector.

Similarly, let us consider the error E = R − R̂ between the
true data covariance matrix and its sample estimate. We assume
that E is bounded in its Frobenius norm by some known constant
γ > 0, i.e., ‖E‖F ≤ γ.

To incorporate robustness against such norm-bounded errors e

and E, let us modify the MMSE optimization problem in (3) as

min
f

max
‖E‖F≤γ

‖e‖≤ε

{
f

H(R̂+E)f − f
H(d̃+ βe)− (d̃+ βe)H

f

}
(8)

The problem statement in (8) guarantees that the MSE cost func-
tion is minimized for the worst-case scenario which corresponds to
the largest value of the MSE over all possible norm-bounded errors
in the desired user signature and data covariance matrix. There-
fore, the proposed design should improve the MMSE receiver ro-
bustness via protecting its performance against worst-case errors.

The problem in (8) can be rewritten as

min
f

{
max

‖E‖F≤γ
{fH(R̂+E)f}+ max

‖e‖≤ε
{−f

H(d̃+βe)−(d̃+βe)H
f}

}
(9)

To simplify (9), the following two lemmas will be used.
Lemma 1. For any Hermitian E and R̂ and any fixed f ,

max
‖E‖F≤γ

f
H(R̂ + E)f = f

H(R̂ + γI)f (10)

Lemma 2. For any fixed f ,

max
‖e‖≤ε

{−f
H(d̃ + βe)− (d̃ + βe)H

f} = −f
H
d̃− d̃

H
f + 2εβ ‖f‖

(11)

Using (10) and (11), we can transform (9) to

min
f

{fH(R̂ + γI)f − f
H
d̃ − d̃

H
f + 2εβ‖f‖} (12)

Differentiating the objective function in (12) with respect to f
H

and equating it to zero, we obtain that the solution to (12) satisfies
the equation

(R̂ + γI)f + εβf/‖f‖ = β s̃1 (13)

To solve (13) directly, one needs to know β or, equivalently, A1. In
order to avoid this difficulty, let us rescale the vector f by the fac-
tor of β (note that, rescaling f by an arbitrary constant, we do not
change the probability of error of any linear multiuser receiver).
Taking into account that our ultimate goal is the probability of er-
ror performance and using, for the sake of simplicity, the same
notation f for the rescaled vector, we rewrite (13) as

(R̂ + γI)f + εf/‖f‖ = s̃1 (14)

Now, the knowledge of β (or A1) is not required.
To solve (14), let us rewrite it as

f = (R̂ + (γ + ε/‖f‖)I)−1
s̃1 (15)

We observe that the robust multiuser receiver (15) uses an adaptive
diagonal loading factor γ + ε/‖f‖ which depends on ‖f‖. This
factor is optimally matched to known amounts of uncertainty in
the desired user signature and data covariance matrix. From (15),
it follows that, if ‖f‖ is available, then we can use (15) to calculate
the coefficient vector of the proposed robust blind receiver. In what
follows, we propose a simple method to determine ‖f‖.
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Taking the norm of the both sides of (15), we have ‖f‖2 =

‖(R̂ + (γ + ε/‖f‖)I)−1
s̃1‖2. Introducing τ � ‖f‖ > 0 we

obtain that solving this equation is equivalent to finding a positive
value of τ such that τ2 = ‖(R̂ + (γ + ε/τ)I)−1

s̃1‖2. Write the
eigendecomposition of R̂ as R̂ = UΛU

H where U is the L × L

unitary matrix whose columns are the eigenvectors of R̂ and Λ is
the diagonal matrix of the real positive eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λL > 0 of R̂. Then, we have

‖UΨ
−1(τ)UH

s̃1‖2 − τ2 = 0 (16)

where Ψ(τ) � Λ + (γ + ε/τ)I. Introducing the L × 1 vector
š = [š1, . . . , šL]T � U

H
s̃1, we can express the r.h.s. of (16) as

‖UΨ
−1(τ)UH

s̃1‖2−τ2 =

[
L∑

i=1

( |ši|
ε + τ(λi + γ)

)2

− 1

]
τ2 (17)

Using (17) and noting that τ > 0, we obtain that solving (16) is
equivalent to finding a positive value for τ such that

f(τ) �

L∑
i=1

( |ši|
ε + τ(λi + γ)

)2

− 1 = 0 (18)

The following lemma states the necessary and sufficient conditions
under which (18) has a unique positive solution.

Lemma 3. Equation (18) has a unique real-valued and positive
solution if and only if ‖s̃1‖ > ε.

An intuitively appealing interpretation of Lemma 3 is that our
approach is applicable only if the maximum of the norm of the
error e does not exceed the norm of the presumed desired user
signature itself. We assume that this condition is always satisfied.

Using (18), we can upper-bound the function f(τ) as

f(τ) <
‖s̃1‖2

(ε + τ(λL + γ))2
− 1 � fup(τ) (19)

Noting that f(τ) and fup(τ) are both decreasing functions for pos-
itive values of τ and that, according to Lemma 3, the root τ of f(τ)
is positive, we obtain from (19) that this root is always smaller than

the root τup =
‖s̃1‖ − ε
λL + γ

of fup(τ). Hence, the value of τ belongs

to the interval (0, τup). With this condition, the problem of finding
τ becomes standard using the algorithm of [6] which consists of
a binary search followed by Newton-Raphson iterations. The bi-
nary search technique is used to obtain a proper initial point for the
subsequent Newton-Raphson procedure. As shown in [6], this al-
gorithm converges to a ζ-neighborhood of τ inO (log log(τup/ζ))
iterations. The algorithm to obtain ‖f‖ can be summarized as fol-
lows:

1. Use binary search to find τ0 ∈ (0, τup) such that f(τ0) > 0
and f( 13

12
τ0) < 0 (see [6] for details).

2. Set l = 1 and select a small positive value of ξ which will
be used in the algorithm stopping criterion.

3. Obtain τl as τl = τl−1−f(τl−1)/f ′(τl−1) where f ′(τl−1)
is the derivative of f(τ) at τ = τl−1.

4. If |f(τl)| < ξ, go to the next step. Otherwise, repeat steps
2 and 3.

5. Determine ‖f‖ as τ = τl.
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Figure 1: BERs versus SNR.
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Figure 2: BERs versus N .

As the procedure developed above enables us to find the value
of ‖f‖, it can be directly used to compute the coefficient vector
of our multiuser receiver. Using this fact, the proposed multiuser
detection algorithm can be summarized as follows:

1. Compute the sample covariance matrix R̂ and find its eigen-
decomposition.

2. Compute š = U
H
s̃1 and find the value of τ = ‖f‖ using

the Newton-Raphson procedure.

3. Compute the receiver coefficient vector as frob = (R̂ +
(γ + ε/τ)I)−1

s̃1.

If the channel is unknown, c1 can be used as a presumed desired
user signature [2]-[4]. In this case, the receiver in the last step can
be rewritten as

frob = (R̂ + (γ + ε/τ)I)−1
c1 (20)

5. SIMULATION RESULTS

We consider a 7-user synchronous CDMA system. The BPSK
modulation scheme is used and binary Gold codes of the length
L = 31 are employed as user spreading codes. The interfering
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Figure 3: BERs of the proposed receiver versus ε/‖c1‖.

users are assumed to have the interference-to-noise-ratio (INR)
equal to 20 dB.

The performances of the following multiuser receivers are co-
mpared in terms of the BER at the output of the symbol detector:
the clairvoyant Wiener receiver which corresponds to the ideal
case when the desired user signature s1 is known exactly (this
algorithm is considered for comparison reasons only); the blind
multiuser receiver (6); the diagonal loading-based blind multiuser
receiver (7) with different ad hoc values of γ; the training-based
MMSE multiuser receiver; and the proposed blind receiver (20).

In the training-based receiver, 30 samples are used to estimate
d. A total of 1000 runs is used to obtain each point of the BER
curves.

To model the effect of multipath channel, each of the user
spreading codes is distorted by an additive random Gaussian vec-
tor drawn uniformly from the interval [−δ, δ]. For each user, such
a random vector is added to the spreading code vector to simulate
the effect of ICI [4]. The upper bound for the norm of the error
vector e is equal to δ

√
L, and hence, ε = δ

√
L has been chosen.

Figure 1 shows the BERs of the multiuser receivers tested ver-
sus the SNR of the desired user. In this figure, N = 40 data vectors
are used to obtain R̂, and δ = 0.7 is chosen. Note that this choice
of δ implies that the amount of ICI per chip is up to 70%. As it can
be seen from Figure 1, our robust multiuser receiver provides the
best performance tradeoff over all SNR values. It can be observed
that the clairvoyant multiuser receiver shows a poor performance
which is due to the short data length effect. Furthermore, the BER
of the diagonal loading-based multiuser receiver does not decrease
monotonically when the SNR increases. Note that our robust mul-
tiuser receiver (20) uses an adaptive diagonal loading factor whose
value varies with the SNR and is optimally matched to the uncer-
tainties in the presumed desired user signature and data covariance
matrix. This explains why the performance of (20) is good over a
wide range of SNR.

Figure 2 shows the BERs of the multiuser receivers tested ver-
sus the data length N . In this figure, SNR = 10 dB, δ = 0.7 and
ε = δ

√
L are chosen. We can observe that the proposed multiuser

receiver has substantially faster convergence rate as compared to
the other multiuser detection techniques.

To study the effect of selection of the parameters ε and γ, the
BER of our robust multiuser receiver is shown in Fig. 3 versus
ε/‖c1‖ = ε/

√
L for different values of γ. Here, SNR = 10 dB,
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Figure 4: BERs versus δ.

δ = 0.7 and N = 40. As we see from Fig. 3, when γ is com-
parable to the noise power σ2, the performance of the proposed
method is less sensitive to ε compared to the case when γ = 0 or
when γ is much larger than σ2.

To study the effect of an improper choice of δ, the BERs are
shown versus δ in Fig. 4 for SNR = 10 dB, N = 40, and ε/

√
L =

0.7. Such a choice of ε implies that we assume that δ = 0.7 while
the actual value of δ varies between 0.3 and 0.9. As can be seen
from Fig. 4, overestimating δ can even improve the performance
of the proposed multiuser receiver while underestimating δ does
not affect the performance significantly.

6. CONCLUSIONS

A new blind multiuser receiver has been proposed which is robust
against the effects of erroneous presumed desired user signature
and short data length. Our approach is based on the explicit model-
ing of possible mismatches in the mean-square error cost function
and worst-case performance optimization.
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