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ABSTRACT 

This paper generalizes previous work on BPSK [1] to multiuser 
detection for constant modulus constellations in synchronous 
CDMA communication systems based on maximum a posteriori
(MAP) estimation.  The known finite alphabet of discrete 
transmitted symbols is approximated as a stochastic parameter 
with Gaussian distributions centered at the true values of the 
symbol constellation.  This allows for the development of a 
MAP estimator that takes a priori knowledge of the symbol 
constellation into account in order to improve estimation 
accuracy.  We examine the performance of the proposed 
algorithm for BPSK, QPSK, and 8PSK and compare the results 
with other well-known multiuser detection techniques. 

1. INTRODUCTION 
In a code-division multiple access (CDMA) communication 
system, the transmitted symbols from different users 
simultaneously occupy the same frequency band and hence act as 
multiple access interference (MAI) to one another.  Separation of 
the user signals at the base-station receiver is accomplished by 
exploiting each user’s known length N signature code as a means 
of discrimination.  This paper extends previous work for the 
synchronous reception of BPSK modulated user signals to 
general constant modulus user signals. 

Each user’s binary data are encoded into one of M
predetermined complex symbols.  The complex symbols are 
denoted as )(, ng ki  where ],,2,1[ Mi ∈  indicates the distinct 
symbol for each of the Kk ,,2,1=  users and n  is the symbol 
index.  For the thk  user at time n , the symbol )(, ng ki  is 
multiplied by the signature code ks  so that the transmitted 
baseband discrete time signal is kki ng s)(, .  Without loss of 
generality, we will henceforth suppress the symbol index, n .

For K synchronously received CDMA signals in additive 
white Gaussian noise (AWGN) without channel distortion, the 
received signal sampled at the chip-rate over a symbol period is 
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where the vector [ ] T
Kddd 21=d  is the collection of all K

users’ complex received symbols, { }Kdiag λλ ,,1=  is a 
diagonal matrix of the respective received signal amplitudes 
(assumed real-valued and known to within some reasonable
estimation error), S  is the KN ×  CDMA code matrix with 
columns Kss ,,1 , and z  is an 1×N complex AWGN vector 
with noise power 2

zσ . In order to perform continuous domain 
estimation, the finite set  of discrete symbols kig ,  at the 
transmitter becomes the continuous random variable kd  at the 
receiver.  Without loss of generality, after normalization by the 
largest user’s receiver signal amplitude, kλ  is assumed to be 
between 0 and 1.  Recovering the users’ data at the receiver 
therefore requires separating the K user’s CDMA signals and 
then selecting the discrete symbol estimate kig ,ˆ  that most closely 
matches the continuous symbol estimate kd̂ .

The conventional approach, otherwise known as the 
matched filter, estimates received symbols as 

rSyd H
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where [ ]H• is the conjugate transpose, or hermitian, operation.  
The matched filter performs poorly when the cross-correlations 
between user signature codes are high, when there are several 
simultaneous users, or when there is a large difference in the 
received powers among users, known as the “near-far effect”. 

The seminal work of Verdu [2] demonstrated that, in terms 
of bit error rate (BER), an optimum multiuser detector exists but 
requires a complexity that is exponential in the number of users, 
K.  This has led to the development of sub-optimum detectors 
that attempt to approach the performance of the optimum 
detector while maintaining a practical computational cost. 

Lupas and Verdu [3] proposed a family of sub-optimum 
detectors called decorrelators and demonstrated that a linear 
mapping of the matched filter output can result in a substantial 
improvement in estimation accuracy.  This mapping is based on 
maximum likelihood estimation and is found by maximizing the 
likelihood of d  for K superimposed CDMA signals in AWGN 
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where )(1 2
zzC πσ= .  The decorrelating detector is quite robust 

in that it requires no knowledge of the received amplitudes .
However, it may suffer from noise enhancement when the 
correlation matrix is poorly conditioned. 

To reduce the effects of noise enhancement in the 
decorrelating detectors, minimum mean square-error (MMSE) 
detectors were proposed in [4] that, because they take 
background noise into account, balance the trade-off between 
reducing MAI and minimizing noise in the detector output. 

Another class of detectors is known as subtractive 
interference cancellers whose principal objective is to estimate 
the MAI generated by each user so that it can be subtracted from 
other users.  Interference subtraction can be performed either 
serially, as a successive interference canceller (SIC) [5]-[6], or in 
parallel, as a parallel interference canceller (PIC) [7]-[8].   

The approach we propose differs significantly from those 
previously taken.  Past approaches have either treated the 
received symbols as deterministic parameters and used the a
priori knowledge about the symbol constellation only for 
projection after estimation or have treated them as stochastic 
parameters but limited them to belong to a finite set of discrete 
values.  We relax the latter constraint by formulating the received 
symbols as stochastic a priori information in the form of a 
continuously differentiable distribution that can be viewed as an 
approximation to the discrete distribution, and use this a priori
knowledge during the estimation process to improve 
performance.  As depicted in Fig. 1 for QPSK, the discrete 
distribution for a constellation of M symbols is essentially 
comprised of impulses located at the true symbol values each 
with probability M1 .  A straightforward approximation would 
then be to allow each impulse to become a complex Gaussian 
distribution which is also illustrated in Fig. 1.   

Fig. 1.  Approximating the discrete symbol constellation with 
symbol-centered Gaussians 

The motivation for this approximation is that the symbol 
constellation PDF is now differentiable so it can be combined 
with the likelihood function in (3) to yield a maximum a
posteriori formulation which is known to provide better results 
than maximum likelihood estimation.  From this formulation we 

derive an iterative technique that is capable of improving the 
BER significantly over other multiuser detection techniques. 

This paper is organized as follows.  Section II introduces the 
model used for the continuous approximation of the discrete 
symbol constellation.  Section III develops the proposed iterative 
MAP multiuser detection algorithm.  Section IV provides 
simulation results for binary, quadrature, and 8-ary PSK and 
compares the MAP performance against other multiuser 
detection techniques.  Finally, Section V is the conclusion. 

2. MODELING THE DISCRETE SYMBOL 
CONSTELLATION 

The probability distribution of a particular discrete symbol 
constellation can be viewed as impulses located at the M
complex symbol values, each with probability M1 .  When the 
signal passes through a stochastic channel, each symbol value 
tends to become a continuous random variable due to many 
unaccountable effects.  Therefore, instead of an impulse at each 
symbol value, we model the received symbol constellation as 
having a complex Gaussian distribution centered at each discrete 
symbol value.  Note that a Rayleigh distribution is not 
appropriate here because we are not modeling the received 
amplitude.  Instead, this constellation model is analogous to the 
effects generated by errors in estimating the received signals. 

The complex Gaussian approximation of the discrete symbol 

ig  for user k is 
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where ( )*• is the complex conjugate operator, 2
kσ  is the 

variance of the kth user’s symbol estimate, and the subscript k in 

kig ,  is suppressed for simplicity.  The user variance 2
kσ  is 

dependent on the proximity of the symbol estimate kd̂  to the 
discrete symbol values ig  and is discussed in detail in [9]. 

To determine the complete a priori PDF for the kth user, for 
M equally likely symbols, we have  
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where )(1 2
kkC πσ= .

Finally, because the symbols from different users are 
independent, the a priori PDF for the collection of all K users is 
found by multiplying the PDFs for all respective users as 
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This PDF is combined with (3) to generate a maximum a
posteriori (MAP) multiuser detection estimator. 
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3. MAP MULTIUSER DETECTION 
The maximum a posteriori estimate for multiuser detection is 
found by maximizing the posterior PDF, ( )rd |p , or 
equivalently ( ) ( )ddr pp | .  Ignoring the constant terms, the cost 
function becomes 
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Differentiating J with respect to *d  yields  
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where the j th element of the 1×K vector β̂  is 
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If we then multiply and divide jβ̂  by 
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M

i
ij gh
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)( , for 

Kj ,,2,1= , it can be rewritten as 
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Employing this result, we can therefore express the gradient as 
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where rSy H~~ = , ( )212~
HQ −+= zσ  in which 
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The first term in (11), ( )Qdy −~ , is the maximum likelihood 
(ML) gradient and the second term represents the stochastic a
priori information regarding the values of the discrete symbols. 

This can be further simplified for a constant modulus 
symbol constellation such that each  )( ik gh  becomes 
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and (11) becomes 
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where the kth element of the new vector  is 
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This is the general MAP framework requiring only the specific 
values of ig  for a given symbol constellation in order to 

compute k  and obtain the constellation-specific MAP detector. 

Note that a direct solution to (14) cannot be found 
explicitly.  We therefore find the solution to maximize J through 
steepest-ascent iteration as 

)()()1( ˆˆ mmm J∇+=+ µdd                            (16) 

where µ is the adaptation step-size.  The optimal step-size can be 

shown [9] to be [ ] [ ])()()()( JJJJ HH
MAX ∇∇∇∇= Qµ .  Also 

note that the term 2
zJ σ  in (14) is simply a scaling factor and 

can be absorbed into µ .  Also, the complexity is ( )2KO  [9]. 

For BPSK modulation, it is straightforward to show that  
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For QPSK modulation, with discrete symbol values 11 =g ,

jg =2 , 13 −=g , and jg −=4 , (15) can be simplified as 
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Finally, for 8PSK modulation the a priori term is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )4321

4321

coshcoshcoshcosh

sinh
2

1
sinhsinh

2

1
sinh

xxxx

x
j

xjx
j

x

k +++

−++++
=   (19) 

where { })(
2

2

1
ˆRe

2 m
k

k

k dx
σ
λ

= , { } { }( ))()(
2

2

2
ˆImˆRe

2 m
k

m
k

k

k ddx +=
σ

λ
,

{ })(
2

2

3
ˆIm

2 m
k

k

k dx
σ
λ

=  and { } { }( ))()(
2

2

4
ˆImˆRe

2 m
k

m
k

k

k ddx −=
σ

λ
 . 

4. SIMULATION RESULTS 
For each of the different symbol constellations discussed, we 
compare the performance of the MAP detector with the MMSE, 
decorrelating, and matched filter detectors.  Due to space 
restriction we limit our comparison to the case of equal power for 
all users.  In each case we consider 5 users with signature codes 
derived from Gold sequences of length 7=N and we iterate the 
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update equation (16) of the MAP detector 20 times with the step-
size MAXµ8.0 .
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     Fig. 2.  System BER for BPSK with equal-power users 
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     Fig. 3. System BER for QPSK with equal-power users 
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      Fig. 4. System BER for 8PSK with equal-power users 

For BPSK modulation, Fig. 2 illustrates the average BER 
over all 5 users.  Obviously, the MAP detector performs 
substantially better than the other three detectors with an order of 
magnitude improvement in BER over MMSE at 16 dB 0/ NEb .

Figure 3 depicts the average BER for QPSK modulation.  Again 
the MAP detector exhibits significant BER performance 
improvement over the other detectors with an order of magnitude 
improvement in BER over MMSE at 16 dB 0/ NEb .  Finally, 

Fig. 4 presents the average BER results for 8PSK modulation.  
While the improvement is not quite as dramatic, the MAP 
detector is still noticeably better than the other detectors with less 
than ½ the BER of MMSE at 12 dB 0/ NEb .

5. CONCLUSIONS 
We have proposed an iterative algorithm for multiuser detection 
that incorporates the a priori knowledge of a constant modulus 
symbol constellation such as M-PSK into the optimization 
process to improve the estimation accuracy of the transmitted 
user symbols.  This is accomplished by approximating the 
discrete PDF of the constellation in the transmitter by a 
continuous PDF at the receiver that is comprised of complex 
Gaussians centered at the true symbol locations.  This 
continuous PDF is combined with the likelihood function of the 
received data to generate a differentiable maximum a posteriori
objective function that can be maximized iteratively to yield a 
dramatically lower BER than the MMSE algorithm.   
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