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ABSTRACT

We consider blind decision-feedback equalization (DFE) un-
der high-order modulation, which presents more difficult operat-
ing requirements than lower-order modulation. We base our de-
sign on the multimodulus algorithm (MMA). To attain fast con-
vergence speed and low steady-state mean-square error (MSE), we
consider varying the adaptation step size according to the presently
achieved MSE. For this we investigate the properties of the MSE
under blind MMA-based DFE and, based on the results, propose a
method to estimate its value. The estimate is obtained by analyzing
those equalizer filter outputs whose values fall outside the bound-
ary of the modulation’s constellation. Simulation results demon-
strate the effectiveness of the proposed scheme.

1. INTRODUCTION

Blind equalization is of use in transmission systems where there
exist no (or insufficient) known signal patterns that can be used for
equalizer training. An example is downlink cable modem trans-
mission where the known signal patterns are quite sparse that, if
they are used to adapt equalizers in conventional training-sequence-
based ways, the convergence may be very slow. A number of
blind equalization algorithms have been proposed in the last few
decades, of which many are of the stochastic gradient type. We
consider the recently proposed multimodulus algorithm (MMA)
[1], [2], which has relatively good performance.

A well-known design issue of stochastic-gradient type of adap-
tive algorithms is the choice of the adaptation step size, which has
to strike a balance between convergence speed and steady-state
SNR. In QAM-based transmission, this issue is more acute for
higher-order modulations than for lower-order ones, because the
former require higher SNR values to attain a given error perfor-
mance than the latter and thus the convergence speed has to be sac-
rificed more. A way to alleviate this problem is to employ a vari-
able step size (VSS) [3], [4]. For automatic adjustment of the step
size, however, a mechanism to determine the current state of con-
vergence is required, where the state of convergence may be char-
acterized, for example, by the estimated mean-square error (MSE)
at equalizer output [4]. Herein lies another problem that is more
serious for blind equalization under higher-order modulations than�
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under lower-order ones. That is, the equalizer output errors are rel-
atively large before final convergence. Thus, for higher-order mod-
ulations, tentative decisions are liable to greater error probabili-
ties and simplistic MSE estimates may suffer greater inaccuracy.
In this work, we propose a method for reliable MSE estimation
and an associated VSS multimodulus algorithm for blind decision-
feedback equalization (DFE) under high-order QAM-based trans-
mission, such as 1024-QAM over downlink digital cable channels.

The remainder of the paper is organized as follows. Section
2 presents the MMA algorithm for blind DFE and motivates our
VSS design based on MSE estimation. Section 3 discusses the
proposed MSE estimator. Section 4 further discusses the design
of the VSS MMA algorithm and elucidates it with an example that
also illustrates the superiority of the VSS MMA over a single-stage
MMA. And Section 5 is the conclusion.

2. BLIND DFE EMPLOYING MMA

2.1. System Structure

The MMA [1], [2] seeks to minimize a cost function given by� � 	 �  � � � 	 �� � � �� � � � � 	 �� � � �� � �  
(1)

with � ��  � " $ � �� &� " ' $ � ' � &  � " $ � �� &� " ' $ � ' � & * (2)

where
	

is the filter output in the equalizer, with
	 � being its real

part and
	 � its imaginary part,

$ � and
$ � are, respectively, the real

part and the imaginary part of the QAM symbol
$
, + is a postive

integer, and � � is called the constraint value of the algorithm. In
practice, +  -

is a good choice to compromise between imple-
mentation complexity and performance [2]. Letting +  -

and
taking the gradient of

� � 	 �
with respect to

	
yield/ � 	 �  	 � " 	 �� � � �� & � 3 	 � " 	 �� � � �� & 6 (3)

With fractionally-spaced DFE, we have
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(4)

where we now associate a time index
8

(in number of QAM sym-
bols) with the equalizer filter output

	
, G

F
H � is the L th coefficient
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of the � th phase of the feedforward filter (FFF), �
�

is the � th coef-
ficient of the feedback filter (FBF), � � � � 	

is the equalizer input in
phase � of symbol

�
, 
 is the oversamping factor, � � is the length

of the FFF in number of symbols, � � is the number of taps in the
FBF, and

� � � � 	
is the decision output of the equalizer. From (3),

we obtain the MMA blind DFE adaptation equations as

�
�

� � � � 	 � �
�

� � � � � � 	 � 	 � � � 	 � �� � � � � 	 � (5)

�
� � � 	 � �

� � � � � 	 � 	 � � � 	 � � � � � � � 	 � (6)

where 	 is the step size.

2.2. Steady-State MSE of the MMA

We start by considering the simpler case of linear equalization.
For this, let 
 be the vector of equalizer coefficients and � be the
vector of input signal samples stored in the equalizer tapped delay
line. The adaptation equation is given by
 � � 	 � 
 � � � � 	 � 	 � � � � � 	 	 � � � � 	 � (7)

Let 
 � � � be the optimal filter coefficient vector and define �
 � � 	 �
 � � � � 
 � � 	
. Then the a priori and the a posteriori estimation

errors are given by, respectively,� � � � 	 � � � � 	 �
 � � � � 	 � (8)� � � � 	 � � � � 	 �
 � � 	 � � � � � 	 � 	 � � � � 	 � � � � � � � 	 	 � (9)

In the steady state where
 � �
 � � 	 � �  � �
 � � � � 	 �

, the mean-
squares of the estimation errors are related by [5]

 � " � � � � 	 " �� � � � 	 � �  �  " ## � � � � 	 � 	 � � � � 	 � � � � � � � 	 	 ## �� � � � 	 � � % �
(10)

which can be simplified to � ' $ � � � � 	 � � � � � 	 	 & � � 	 '  � � � � � 	 � � " � � � � � 	 	 " � � � (11)

Now, assume that the residual error is small when the equalizer is
converged. Then first-order approximation as in [6] gives� � � � � 	 	 * � � � � � 	 	 � � + � � � � 	 	 � � � � 	 � (12)

where
� � � 	

is the transmitted symbol at time
�
. (Without loss of

generality, the transmission and filtering delays are disregarded.)
Substituting (12) into (11) and assuming independence among� � � � � 	 	

, � � � � 	
, and � � � � 	 � �

as in [5], we obtain the MSE as � " � � " � � � 	 '  � � � � � 	 -  � " � � � 	 " � 	 � ' $ � + � � 	 & � � (13)

Since
 � � � � � 	 � 0 1 � where

0 1
is the mean-square value of the

equalizer input and � is the length of the equalizer, we have � " � � " � � � 	 ' 0 1 - � -  � " � � � 	 " � 	 � ' $ � + � � 	 & � � (14)

Now we turn to the case of DFE. The update equations (5) and
(6) can be combined into4 � � � 	

� � � 	 6 � 4 � � � � � 	
� � � � � 	 6 � 	 � � � � � 	 	 4 � � � � 	� � � � � � � 	 6 �

(15)
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Fig. 1. Steady-state SNR of MMA blind DFE for 1024-QAM
transmission over the channel in [7]. Solid lines: simulation;
dashed lines: theory.

with obvious definitions for 9 : < > , ? : < > , @ : < > , and A B . Extending
the result (14) for linear equalization to the case of DFE yieldsC D F G H F J K M O P C D F S : B > F J KC D U W S X : B > [ K \ : ^ _ a c d e ^ g C i > (16)

where
C i M C D F B F J K

is the QAM symbol energy. Now sinceS X : B > M k P F B F J m o Jp q (17)

we getC D F G H F J K M O \ C : F S : B > F J >k C i m P o Jp \ : ^ _ a c d e ^ g C i > t (18)

To verify the above results, we simulate 1024-QAM transmis-
sion over the (rather bad) cable channel in [7]. Theoretical analysis
of the achievable SNR under MMSE (minimum MSE) DFE shows
that ^ _ M v w

and ^ g M P w
should be suitable choices for a M P

(i.e., x y P
-spaced FFF). The equalizer input SNR is 36 dB. The

results for several adaptation step sizes and several equalizer in-
put signal power levels are depicted in Fig. 1. The figure shows
that the theory agrees reasonably well with the simluation results
at larger step sizes that yield smaller steady-state SNR. The dis-
crepancy at smaller step sizes (larger steady-state SNR) should be
due to that the assumptions made earlier do not fully capture the
dynamic behavior of the algorithm.

2.3. Approach to Variable-Step-Size MMA

The above results may be used in the following way: At any time,
we calculate the actual SNR and compare it with the steady-state
SNR for the presently used adaptation step size. If the latter has
been reached, then we may switch to a smaller step size. Finally,
when the SNR is high enough, we may switch out of blind mode
of operation and enter decision-directed (DD) mode of equalizer
operation.
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Fig. 2. Motivation and principle of boundary MSE estimation,
illustrated for the case of 4-PAM (applicable also to 16-QAM).
The constellation points are at � �

and � � . Dashed lines illustrate
PDFs of equalizer filter output � � � � corresponding to different val-
ues of � � � � ; solid line their sum.

Key in this procedure is the estimation of actual SNR, or equiv-
alently, the estimation of the actual MSE given by

	 �  � � � � �
� � � �  � �

, the mean-square difference between equalizer filter out-
put and the transmitted QAM symbol. To see how this can be
accomplished, consider Figure 2 which illustrates the situation of
4-PAM (applicable also to 16-QAM), where the signal points are
at � �

and � � . In the figure, the dashed lines illustrate the PDFs of
the equalizer filter output � � � � corresponding to different values
of � � � � and the solid line is their sum. An estimator of the MSE
can be obtained from analyzing the PDF of � � � � . However, when
the SNR is not high, the center part of the PDF is relatively flat.
The variation in this part with changes in SNR (when the SNR is
not high) is relatively small. Thus this part does not contribute
significantly to the ability of MSE estimation. Numerical results
also verify this observation. PDF variation outside the boundary
symbol values is greater. Thus we base our MSE estimation on
analysis of values of � � � � that fall outside the boundary symbol
values. Accordingly, we call this approach boundary MSE estima-
tion. It is further described and analyzed in the next section.

From Fig. 2, we also see that only about
� � � of the equalizer

input samples will be used in performing the estimate, but not all
samples. This is a price we pay to have good sensitivity in MSE
estimation.

3. BOUNDARY MSE ESTIMATION

Treat a QAM symbol as the direct sum of two PAM symbols. Let�� denote the value of either dimension of the equalizer filter output� . The boundary MSE, for PAM, is defined as

BMSE
� 	 � � �� � �� � 
 � � � ��  ��  � �� � 
 � � � (19)

where
�� � 
 � is the largest symbol value in the PAM constellation.

For convenience, let the constellation points of � -PAM have
values � � � � � � � � � � � � � � � � . Due to symmetry, in theoretical
analysis we only need to consider the positive side. Let � � be the

probability that the transmitted symbol value is � � � � � � �
� but�� � �� � 
 � . Then

� � � � �� �� � � � � ! # $ & � � � �
� �

� �� � � ( * � �
Q + � �� - � (20)

where we have assumed that the sum of the residual intersymbol
interference (ISI) and additive noise is Gaussian and let

� �
denote

its variance. Note that
� �

is the target of estimation. The corre-
sponding mean-square boundary error is given by

. � � � �� � �� � � � � ! # $ & � � � �
� �

� �� � � ( * �

� � 2 � � �
� � � � � � 5 �� � � ! # $ & �

� � �� � ( � (21)

Assume all constellation points are transmitted with equal prob-
ability. Then the total boundary error probability and total mean-
square boundary error, on the positive side, are given by

� � �� 8 : ;<
� = � � � and

. � �� 8 : ;<
� = � . � � (22)

respectively. The BMSE is thus given by.
�

� � � � 2 ? � � � @ �
� �

�
�

�? � @ �
� �

�
�

�
� B �

�
� � ? � � ! # $ � � � � � �

� � �? � @ �
� �

�
�

� � (23)

Figure 3 plots the ratio of
� �

to BMSE in log scale for 32-PAM
(applicable to 1024-QAM) over a range of SNR values (where
SNR

� 	 � �� � � �
� �

with
�� being PAM symbol value). Note that

the ratio is nearly unity in large SNR. This is because when the
true MSE

� �
is small, the last two terms in the RHS of (23) are

close to zero. Even for an SNR as low as 0 dB, the difference is
only about 1.65 dB. In any case, this difference is compensated for
in our variable-step-size MMA.

Practical estimation of the BMSE, for QAM, may be effected
by time averaging, such as

BMSE � � � � E � BMSE � � � � � � � � � E � �
�

�  �� � � �  � �� � 
 � � � � (24)

where
E

is the forgetting factor, the factor 2 is to account for the
difference between QAM and PAM, and the recursion is executed
only when

 �� � � �  � �� � 
 � .

4. VARIABLE-STEP-SIZE MMA BLIND DFE AND
SIMULATION RESULTS

Our proposed variable-step-size method works in a multistage, gear-
shifting fashion rather than employing a continuously varying step
size as some other researchers have considered. First, we decide
an SNR that is safe to switch to DD mode with little concern of di-
vergence afterwards. In the case of 1024-QAM, for example, sim-
ulation results indicate that 27 dB appears to be proper. Hence, the
objective of blind equalization is set to be 27 dB. Figure 1 can then
be used to find a suitable step size. For example, when � # � H % J

,
a suitable step size is around K M � %

: ;
�
. This constitutes the last

stage of blind equalization.
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Fig. 3. Ratio of MSE to BMSE for 32-PAM (and 1024-QAM).

Table 1. Algorithm Parameters for the Example Design
Stage Index 1 2 3

Objective SNR (dB) 16 23 27
Step Size 8e–9 2e–9 5e–10

Stage Transition Threshold 13.6 2.9 1.3

Prior to the last blind stage, we can have one or more stages
with larger (but diminishing with stage index) adaptation step sizes
to effect fast initial convergence. We here present an example us-
ing two additional stages. For this, note again from Fig. 1 that a
step size of � � � � � �

can yield an SNR of 16 dB after convergence
and a step size of

� � � � � �
, 23 dB. The BMSE value corresponding

to these SNR values can be obtained as

� 
 � � �


� � � � � 
� � � � (25)

where � � 
� � �

is the ratio of MSE to BMSE at the given SNR
value as can be obtained from (23) and shown in Fig. 3. For ex-
ample, at SNR = 16 dB the ratio is about 1.1 dB. In the case of
1024-QAM for which

� � � � � �
, we get

� 
 � � � � �
. Once the

estimated BMSE of the first stage reaches this level (call it thresh-
old), we can switch to the second stage. And this continues to the
last stage of blind equalization. The resulting algorithm parame-
ters for this example are summarized in Table 1.

Figure 4 shows some simulation results for blind DFE under
1024-QAM transmission over the cable channel in [7] where the
equalizer input SNR is 36 dB. The parameters of the multistage,
VSS MMA blind DFE are as given above. The forgetting factor
used in BMSE estimation is 0.99. The single-stage MMA uses
a step size of � � � � � 
 �

. The multistage algorithm clearly out-
performs the single-stage algorithm. It only requires about 50,000
samples to converge and switch to DD mode whereas the single-
stage MMA requires about 125,000 samples. Hence the former
can provide a much faster startup speed than the latter.

An alternative algorithm design that sidesteps Fig. 1 is under
investigation. Nevertheless, we note that the parameters in Table 1
are found applicable to all the cable channels that we simulated.
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Fig. 4. Convergence of multistage VSS MMA and single-stage
MMA.

5. CONCLUSION

Higher-order modulations lead to more stringent design require-
ments for blind equalization than lower-order ones. We considered
the problem of blind DFE employing the multimodulus algorithm
under high-order QAM, and developed a novel variable-step-size
adaptation scheme based on a new way of MSE estimation. Simu-
lation results show that the proposed method is effective in achiev-
ing fast startup.
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