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ABSTRACT
In this paper, the semi-blind MIMO channel identification

problem is modelled as a stochastic maximum likelihood

estimation problem and an iterative method, called infor-

mation geometric identification (IGID), for channel identi-

fication and tracking is presented. The method is developed

based on the results from information geometry; specifi-

cally, the alternating projections theorem first proved by

Csiszar [1]. It is demonstrated that the proposed method

has similar performance compared to a recently reported

method based on the expectation maximization (EM) algo-

rithm [2]. Since the IGID method has an analytical solution,

the proposed algorithm can be implemented much faster

while while having a similar performance. The method can

be considered as a generalization of all the methods devel-

oped based on the EM algorithm.

1. INTRODUCTION

It is known that in a MIMO wireless system with OFDM

modulation, the output of each of N subchannels with M
users can be modelled by:

y(n) = Hx(n) + w(n) (1)

where w(n) ∈ �N is independent white Gaussian noise

with covariance Ψ, H ∈ �N×M is the channel gain ma-

trix and x(n) ∈ �M and y(n) ∈ �N are input and output

signals, respectively. Due to the orthogonality of the sub-

channels, the channel identification methods can be applied

to each tone independently. Therefore, it is enough to solve

the identification problem for each individual tone. Inter-

ested readers are encouraged to read [2] for further details.

Stochastic maximum likelihood (ML) estimation for blind

channel identification and tracking is the subject of a great

deal of research within the last two decades. Rather than

assuming a deterministic input to the channel, the main as-

sumption in this approach is to consider a random input

space with a certain probability density function (pdf ). The

stochastic ML estimation problem for identifying the chan-

nel gains is defined as:

ĤML = arg max f(y) (2)

where f(y) is the likelihood function of the output observa-

tions y. If a training data set consisting of the input signal

and output observation pairs are available, and assuming a

Gaussian noise, the so called complete-data maximum like-

lihood estimation of the channel Ĥ can be solved easily by

the pseudo-inverse method [2].

However, in blind identification, since there is no train-

ing set and the input is assumed to be unknown, the obser-

vations are not sufficient statistics for estimating the chan-

nel parameters. Therefore, considering a distribution p(x)
for the input signal, one can solve the following equivalent

incomplete-data problem:

Ĥ = arg max
∫

X

f(y|x)p(x)dx. (3)

It is easy to observe that the maximization is over all

possible values of the unknown input signal. Therefore,

solving this problem usually is very complex. The EM al-

gorithm provides a general prescription to the maximiza-

tion problem of (3) and is the core of almost all the iterative

methods proposed so far [2]. These methods are mainly

based on the observation that instead of maximizing the un-

available ”complete-data” likelihood it is sufficient to max-

imize the expectation of the likelihood over the input prob-

ability distribution, in two main iterations: Expectation and

Maximization. Based on this algorithm, Aldana [2] has ap-

plied the EM algorithm to channel identification and track-

ing in a multiuser MIMO system. The method requires

computation of expectations over all possible constellation

points. This is a limitation of the method when the number

of constellation points is large. This limitation is more cum-

bersome when the input space is not discrete. In this case,

Monte Carlo integration methods are necessary for comput-

ing the expectations inherently embedded in the EM-type

algorithms.

In this paper, the semi-blind MIMO channel identifica-

tion problem is modelled as a stochastic maximum likeli-

hood estimation problem and an iterative method for chan-

nel identification and tracking is presented. Since the al-

gorithm works in batch mode on blocks of input data, it is

assumed that the channel remains constant over each block.

This assumption holds for high data rate wireless applica-
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tions. The method is developed based on the results from

information geometry; specifically, the alternating projec-
tions theorem first proved by Csiszar [1] which provides

an iterative method for minimizing the distance between

two sets of probability distributions. It is demonstrated that

IGID has similar performance compared to a recently re-

ported method based on the expectation maximization (EM)

algorithm [2] when applied to a multi-input single-output

(MISO) channel identification problem. The IGID algo-

rithm provides similar performance; however, it admits an

analytical solution, which provides a faster recursive solu-

tion compared to the previous EM-type algorithm, in which

complex multidimensional integrations are usually neces-

sary. This characteristic provides a very fast implementa-

tion relative to previous algorithms.

2. MATHEMATICAL BACKGROUND

2.1. A Brief Look into Information Geometry

From information geometry, the Kullback-Leibler distance,

a.k.a information divergence (I-div), between two probabil-

ity distributions p and q is defined as:

D(p||q) =
∫

X

p(x) log
p(x)
q(x)

d(x). (4)

Given that P as a convex set of probability distributions

(PD) then:

p∗ = min
p∈P

D(p||q) (5)

is called the I-projection of q on P . The convexity of P
guarantees the existence and the uniqueness of the I-projection.

The proposed method in this paper is based on the following

theorem proved originally by Csiszar [1]: Let P and Q be

convex sets of PD measures on X . Also let

p∗ = min
p∈P

D(p||q) (6)

q∗ = min
q∈Q

D(p||q) (7)

be the I-projection of p on Q and q on P , respectively. Then

if {pn}∞n=0and {qn}∞n=0 are the sequences obtained by alter-

nately minimizing D(p||q) using (6) and (7), starting from

some p0 ∈ P , then we have:

lim
n→∞D(pn||qn) = inf

q∈Q,p∈P
D(P||Q). (8)

Furthermore, if X is finite and P and Q are closed in the

topology of point-wise convergence, then:

pn → p∗ such that D(p∗||Q) = min D(P||Q).
(9)

Under certain conditions [1], this theorem guarantees

that alternating projections between the two convex sets P
and Q converges to the minimum distance of the two sets.

According to this theorem, iteratively projecting a PD onto

the convex sets of PD’s converges to the I-projection of the

PD on the intersection of the sets.

We now assume that Q is the set of all possible PD’s

defining the complete-data likelihood function specified by

the MIMO channel model (1), parameterized by H and Ψ.

Assume also that P is the set of all possible PD’s known as

empirical distributions whose marginal distributions (with

respect to the input data x(n)) are equal to the observed

output likelihood, i.e. f(y).
It is shown [3] that the maximum likelihood estimation

problem using incomplete data can be considered as an it-

erative minimization of the distance between the two prob-

ability distribution sets Q and P:

q̂ = arg max
q∈Q

f(y) = arg min
q∈Q

min
p∈P

D(P||Q) (10)

Therefore, alternatively minimizing the KL distance be-

tween P and Q will converge to a solution for the original

ML estimation problem, i.e. estimating the model parame-

ters H and Ψ, defined in (1).

3. SEMI-BLIND CHANNEL IDENTIFICATION AND
TRACKING USING ML ESTIMATION

We now apply the proposed information geometry method

to the semi-blind channel identification and tracking prob-

lem. The method is semi-blind due to the fact that the initial

point of the algorithm is obtained by training the algorithm

with a small number of training data in each block. As ex-

plained in Section 2, we need to define two convex proba-

bility distributions P and Q. Assume the source x(n) in (1)

is distributed as p(x) = N (x−µ,Φ), where N (x−γ,Σ)
denotes a normal distribution in the random variable x, with

mean γ and covariance Σ. Then:

Q = {q|q(y,x) = f(y|x)p(x)} (11)

where f(y|x) = N (y − Hx,Ψ) is the likelihood function.

Therefore Q is the set of all the likelihood distributions with

normal distribution:

q(y,x) = p(z) = N (z − ẑ, Q) (12)

where:

ẑ =
(

Hµ
µ

)
(13)

Q =
(

HΦHT + Ψ HΦ
ΦHT Φ

)
(14)
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where we have used ΦT = Φ.

The expression for Q−1 is given as: [3]:

Q−1 =
(

Ψ−1 −Ψ−1H
−HT Ψ−1 Φ−1 + HT Ψ−1H

)
. (15)

Also assume we model the observations as an empirical

Normal distribution p̃(y) = N (y − r, S). We define:

P = {p(y,x)|
∫

X

p(y,x)dx = p̃(y)}. (16)

Obviously P is the set of all empirical distributions with

marginal equal to the observation distribution p̂(y).

3.1. The First Projection: Computing the Best Complete-
Data Distribution

Having an initial distribution Q0, the first projection pro-

vides the closest empirical distribution in P to Q0 whose

marginal coincides with the observation distribution. It is

shown that the first projection (6) is solved according to [3]:

p∗ = arg min
p∈P

D(p||q) = q(x|y)p̃(y). (17)

Therefore, the optimum distribution that minimizes the ob-

jective function is the posterior distribution of complete-

data likelihood distribution. In the Gaussian case, a closed

form solution exists [3]:

p∗ = q(x|y)p̃(y) = N (z − m, P∗). (18)

where:

m = ẑ + P ∗S(−1)

(
Hµ − r

0

)
(19)

(P ∗)−1 =
(

Ψ−1 − (HΦHT )−1 + S−1 −Ψ−1H
−HT Ψ−1 Φ−1 + HT Ψ−1H

)

(20)

where S(−1) is the covariance matrix S−1 properly aug-

mented with zero blocks. Therefore, to solve the first pro-

jection, i.e., to calculate (P ∗)−1, it is sufficient only to add

the necessary terms to the first element of the inverse co-

variance matrix (15). The closed-form solution (20) avoids

multi-dimensional integrations usually necessary in EM-type

algorithms [2].

3.2. The Second Projection: the Complete-Data ML Es-
timation

The second projection is a complete-data maximum likeli-

hood estimation. The computed distribution P ∗ is in fact the

best complete-data empirical distribution. Therefore, the

problem in the second projection is to find the best distri-

bution in the likelihood model family Q that minimizes the

I-divergence. Since the Q family is parameterized by H and

Ψ, the optimization is performed with respect to these pa-

rameters. For the second projection it is necessary to solve

the following minimization problem:

q∗ = arg min
q∈Q

D(p∗||q). (21)

Assuming that P ∗ has the following block matrix form:

P ∗ =
(

P11 P12

P12
T P22

)
, (22)

and since q∗ is parameterized by H and Ψ the second pro-

jection is equivalent to the following minimization [3]:

{H∗,Ψ∗} = arg min
{H,Ψ}

trace(Ψ−1P11) (23)

− 2trace(Ψ−1HPT
12) (24)

+ trace(Φ−1P22 + HT Ψ−1HP22) (25)

− log detΨ−1 − log det Φ−1 (26)

− log detP ∗ + d, (27)

where d = M + N is the dimension of the complete-data

z = [ y x]T , p∗and P ∗ ∈ �d×d are the probability

distribution and the corresponding covariance matrix com-

puted from the first projection, respectively, and Q is the

covariance matrix for the likelihood distribution q. The min-

imization of the objective with respect to the parameters H
and Ψ gives [3]:

H∗ = P12P
−1
22 (28)

Ψ∗ = P11 − P12P
−1
22 PT

12. (29)

Therefore the iterative application of Equation (20), (28)

and (29) gives a recursive update for the model parameters

Ĥ and Ψ.

3.3. Convergence

It is easy to show that P and Q are convex sets of proba-

bility distributions. Therefore, when P and Q are disjoint,

and assuming a bounded KL distance measure, the final

convergent point does not depend on the initial condition

[1]. However, an arbitrarily chosen initial point can cause

a very slow convergence. Also, special conditions must be

imposed on the projections to avoid the sets P and Q collid-

ing. Numerical inaccuracies can cause the failure of these

assumptions to hold, which can result in problems with con-

vergence [[3]]. Therefore, in this paper we consider a semi-

blind application of the algorithm in which an initial point

is chosen using the training set in each data block.
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4. SIMULATION RESULTS

The IGID method is used for semi-blind channel identifi-

cation and tracking in an ISI-free, flat-fading MISO wire-

less system with OFDM modulation. For the purpose of

comparison with results provided in [2], it is assumed that

there are two users, (M = 2), and one receiving antenna

(N = 1). The results can be extended to the general case

with slight modifications.

It is assumed that blocks of L = 1000 received symbols

are used. In each block, the algorithm is initialized using

training by a set of 20 symbols. Each user transmits ±1 in

each subchannel and the channel gains are chosen from an

iid Gaussian random variable with ‖H‖ = 1.

Figures 1 and 2 show the root mean square error (RMSE)

for estimation of the channel gains and the noise variance

computed for 30 Monte Carlo runs, comparing the results

from the IGID, the EM algorithm [2] and the ideal complete-

data ML estimation. The normalized channel gain mean-

squared error is defined as MSEH = ‖H−Ĥ‖2

M and the

noise variance MSE as MSEσ2 = |σ2 − σ̂2|2 [2].

It can be seen from the figures that the performance

of the IGID algorithm is close to optimum. Further, it is

shown that the IGID has better performance for some val-

ues of noise variance compared to the EM algorithm, with

less computational complexity. Since the IGID has a rigor-

ous foundation in statistics and information theory, it can be

considered as a generalized framework for iterative estima-

tion problems.

5. DISCUSSION

In this paper, a general solution to the maximum likelihood

estimation of channel parameters and noise covariance ma-

trix, called information geometric identification (IGID) is

provided and it is shown that the method has analytical re-

cursive update equations when the noise is assumed to be

Gaussian. The results for the IGID algorithm are compared

to the results of a recently reported method based on the

expectation maximization (EM) algorithm [2]. It is shown

that the IGID method has a similar performance while ben-

efitting from an analytical solution. Thus, complex multi-

dimensional integrations usually necessary in similar EM-

type methods are avoided. This characteristic provides very

fast computation times relative to previous algorithms. The

proposed method can be used for any other estimation prob-

lem which has a similar signal model.
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