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ABSTRACT

A novel blind equalization method based on a subgradient
search over a convex cost surface is proposed. This is an
alternative to the existing iterative blind equalization ap-
proaches such as the Constant Modulus Algorithm (CMA)
which mostly suffer from the convergence problems caused
by their non-convex cost functions. The proposed method
is an iterative algorithm, for both real and complex constel-
lations, with a very simple update rule that minimizes the
l∞ norm of the equalizer output under a linear constraint
on the equalizer coefficients. The algorithm has a nice con-
vergence behavior attributed to the convex l∞ cost surface.
Examples are provided to illustrate the algorithm’s perfor-
mance.

1. INTRODUCTION

The blind equalization has been a research focus for sev-
eral decades. The goal has been the development of fast,
low complexity and robust algorithms which avoid the con-
sumption of useful bandwidth by the training data.

Among the existing methods probably the most popular
ones for practical applications are Constant Modulus (CM)
[1] based algorithms due to their low-complexity implemen-
tation. On the other hand, the CM based algorithms have the
disadvantage of ill or slow convergence due to the topology
of the corresponding non-convex cost surfaces.

The convergence problems caused by the existence of
local minima and saddle points can be solved by replacing
the non-convex cost functions (such as CM and Maximum
Likelihood) with convex cost functions. The reference [2]
investigates the convex cost functions for blind equalization
and proposes minimizing the l∞ norm of the equalizer out-
put under a linear constraint on the equalizer coefficient vec-
tor as a possible choice for the convex cost function. The
choice of the l∞ cost function solves the slow and ill con-
vergence issues related to local minima and saddle points.
However, in order to make the l∞ norm minimization as a
practical choice for blind equalization, the l∞ norm mini-

mization algorithms with low complexity need to be devel-
oped. In fact, this is the focus of our article: although the
l∞ cost function is not differentiable and not suitable for or-
dinary gradient search type iterative algorithm, we propose
an iterative algorithm based on subgradient optimization.

The organization of the article is as follows: The blind
equalization setup used throughout the article is provided in
Section 2. Section 3 provides the background on l∞ norm
minimization as the cost function for blind equalization and
Section 4 outlines the existing methods for subgradient opti-
mization. Section 5 is where the application of subgradient
methods to the blind equalization problem and the corre-
sponding algorithms are provided. Finally, Section 6 pro-
vides examples for illustrating the performance of the algo-
rithm, which is followed by conclusion.

2. BLIND EQUALIZATION SETUP

Throughout the paper, we assume the sample spaced equal-
ization setup shown in Figure 1. Here {xk ∈ {−2 · M +
1, ..., 2 ·M −1}} (PAM) or {xk = ak + jbk where ak, bk ∈
{−2 · M + 1, ..., 2 · M − 1}} (QAM) is the information
sequence sent by the transmitter, {hk; k ∈ {0, ..., Nh − 1}}
is the impulse response of the sample spaced channel, {yk}
is the receiver input signal, {wk k ∈ {0, ..., Nw −1}} is the
equalizer and {zk} is the equalizer output.
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Fig. 1. The Equalization Setup

The purpose of the blind equalization is to make the
equalizer output {zk} as close as possible to the delayed
version of the input {xk}, using only {yk} without any
training data or a priori knowledge of the channel {hk}.

IV - 8730-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



3. l∞ NORM AS THE CONVEX COST FUNCTION
FOR BLIND EQUALIZATION

The reference [2] investigates the properties of convex func-
tions as the candidates for the cost functions for the blind
equalization for PAM signals. Considering the equaliza-
tion setup in Figure 1, under the assumptions that the in-
put constellation has the maximum magnitude symmetry
around zero such that max xk = (2 ·M − 1) and min xk =
−2 · M + 1, and {xk} is sufficiently rich in terms of varia-
tions in time, it can be easily shown that

||z||∞ = (2 · M − 1)||c||1 (1)

where c = h ∗ w is the impulse response of the combined
channel and equalizer. Therefore, minimizing the l∞ norm
of the output is equivalent to minimizing the l1 norm of
the overall impulse response. Under these assumptions, in
reference [2], it is shown that the equalizer coefficients (
{wk; k ∈ Z}) obtained by solving the following problem

minimize ||z||∞ (Problem 1)

s. t. wL = 1

for some L ∈ Z will be the scaled and time shifted inverse
of {hk} such that

h ∗ w = Gδn−d (2)

for some magnitude G and delay d. Placing the FIR con-
straint on equalizer coefficients will still preserve the con-
vex nature of the problem. However, there will be a perfor-
mance degradation due to this constraint.

What remains is to develop preferably low-complexity
algorithms to solve the convex optimization problem. In
[2], it is proposed to minimize p-norm of the output (with a
large p value) to approximate the solution of Problem 1. In
this article, we provide an algorithm to minimize the infinity
norm directly.

For the solution of Problem 1, the real time implemen-
tation requirement places a limit on the time span for the
maximum value search. In order to reflect this requirement
into our algorithm, we can modify the convex optimization
problem as

minimize ||z · r||∞ (Problem 2)

s. t. wL = 1

where {rn} is a rectangular window function with size Ω.
Hence the final problem would be equivalent to minimizing
the l∞ norm of the finite size vector�
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Since z is a linear function of the search vector w and the
constraint wL = 1 is a linear constraint, the corresponding
l∞ norm minimization problem can be solved with the well-
known Linear Programming (LP) formulation:

minimize t (Problem 3)

s.t.

[ −1 Γ
−1 −Γ

] [
t

ws

]
≤

[ −q
q

]

where Γ is equivalent to the Y matrix with (L + 1)st col-
umn deleted, q is the (L + 1)st column of Y , ws is the
w with (L + 1)st element deleted (since wL = 1), and[

t ws
T

]T
is the search vector. There are various ap-

proaches to solve the LP of Problem 3. However, instead of
LP approach, we propose a low complexity iterative method,
which is more suitable for real time applications, that is
based on the recently developed subgradient optimization
methods.

In the next section, we provide a review of subgradient
projection approaches in relevance to our discussion. Later
we present the algorithms based on subgradient projections.

4. A REVIEW OF SUBGRADIENT METHODS

Let f(w) be a convex and possibly non-differentiable func-
tion with domain S, where S is convex. The subdifferential
of f(w) at point w is defined as

∂f(w) = {g|f(y) ≥ f(w) + 〈g,y − w〉 ∀y ∈ S}, (4)

where 〈·, ·〉 is the inner product. A vector g which is a mem-
ber of ∂f(w) is called a subgradient of f(w) at w. The non-
differentiable counterpart of the gradient-descent algorithm
is the subgradient projection method in which the gradient
is simply replaced by a subgradient:

w(i+1) = PS

{
w(i) − µ(i)g(i)

}
(5)

where g(i) is a subgradient picked from the subdifferential
set ∂f(w(i)) and PS is the projection to convex set S. Al-
though the subgradient algorithm looks very much like the
gradient descent algorithm, in the subgradient iteration it
may happen that f(w(i+1)) > f(w(i)) for any µ(i) > 0[3].
However, if the µ(i) parameter is properly chosen, w(i) can
be made to converge to the optimal point.

One major result about the selection of the step size pa-
rameter µi is due to Polyak [4]: if

lim
i→∞

µ(i)

||g(i)|| = 0 and
∞∑

i=0

µ(i)

||g(i)|| = ∞

hold then limi→∞ w(i) = w∗, the optimal point, which pro-
vides sufficient conditions for the convergence.
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Furthermore, if w(i) is not the optimal point and if the
step size satisfies

0 < µ(i) < 2
(f(w(i)) − f∗)

||g(i)||22
(6)

where f∗ is the minimum value of f(w), then it is guaran-
teed that

||w(i+1) − w∗||2 < ||w(i) − w∗||2 ∀i (7)

i.e., the distance to the optimal vector decreases monotoni-
cally. As f∗ is not known a priori in many practical prob-
lems, the use of an estimate of f∗, instead of f∗ have been
investigated in several references(see for example [5]. Re-
cently Goffin and Kiwiel [6] and Sherali et. al. [7] also pro-
posed simple and converging subgradient algorithms with
variable target value f̂∗.

5. ITERATIVE BLIND EQUALIZATION WITH
SUBGRADIENT PROJECTIONS

In order to produce low-complexity iterative algorithms for
solving the Problem 2, we apply the subgradient projection
approach which is outlined in the previous section. The sub-
differential set for the blind equalization cost function

f(w) = ‖z‖∞ = ‖Γws + q‖∞ (8)

is given by

∂f(ws) = Co
{{ΓT

k,:|zk = ||z||∞}∪
{−ΓT

k,:|zk = −||z||∞}} , (9)

where Co {} is the convex-hull operation. Upon the in-
spection of the subdifferential set 9, the search direction
for the subgradient projection algorithm are obtained from
the equalizer input vectors causing the maximum magnitude
equalizer output within the given window. If J is the set of
time instants for which maximum magnitude is achieved,
i.e., J = {k| |zk| = ||z||∞}, then a possible search direc-
tion for the subgradient projection algorithm is

d = −
∑
k∈J

ξksign(zk)ΓT
k,: (10)

where
∑

k∈J ξk = 1 and ξk ≥ 0. For convenience, one may
choose ξl = 1 for some l ∈ J and ξk = 0 for k �= l in which
case the search direction simplifies to

d = −sign(zl)ΓT
l,:. (11)

As a result, we can write the update rule for the subgra-
dient based blind equalization algorithm (SGBA) as

w(i+1)
s = w(i)

s − µ(i)sign(z(i)

l(i))ΓT
l(i),:, (12)

where

• l(i) ∈ {0, ...,Ω − 1} is the index where maximum
magnitude output is achieved at the ith iteration.

• µ(i) is the step size at the ith iteration. We suggest
the use of

µ(i) = α
z
(i)

l(i) − f̂∗(i)

‖Γl(i),:‖2
2

, (13)

as in the relaxation rule of Equation 6 with α ∈ [0, 2).

Here a reasonable choice for f̂∗(i)
is given by

f̂∗(i)
=

1
Ω
||Γw(i)

s + q||1, (14)

which is the average of the magnitude of the output
within the selected window. Note that for this choice,
µ(i) is nonnegative and it is equal to zero only under
the perfect equalization condition. Alternatively, one
could use the methods suggested in references [6, 7]

to determine f̂∗(i)
.

5.1. Complex Constellation Case

As shown in [8], the results of [2] for real constellations
can be extended to the complex constellations that satisfy
the property maxk |�e{xk}| = maxk |Im{xk}|, where the
corresponding optimization problem is defined as

minimize ‖�e{z}‖∞ = ‖�e{Yw}‖∞ (Problem 4)

s. t. �e{wL} = 1,

where Y and w are as defined in Equation 3. Therefore, the
update rule of the algorithm in this case becomes

w(i+1) = w(i) − µ(i)sign(�e{z(i)

l(i)})YH
l(i),:

�e{w(i+1)
L } = 1.

The second equation in the update rule above is the projec-
tion to the constraint set.
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Fig. 2. DSL Channel.
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6. EXAMPLES

In the first example, we consider a DSL channel for the ITU
G.SHDSL Central Office Transmitter and the CSA4 Chan-
nel with 2 bridge taps. The corresponding 128 tap impulse
response and its frequency response are shown in Figure 2.
In this simulation, we assumed M = 2, Ω = 800, Nw = 31,
L = 16 and used the relaxation step rule provided in Equa-
tions 13 and 14. Figure 3 shows the corresponding open eye
measure of the equalizer output as a function of iterations
where open eye measure is defined as

ρ(c) =
∑ |ci| − p

p
(15)

where c = h∗w is the cascade of equalizer and channel and
p = maxi |ci| is its maximum magnitude tap.
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Fig. 3. Open-eye measure for the DSL Channel.

As another example, we consider the complex channel
h = {−1.0493 + 0.2305i, 1.4129 − 1.4497i,−0.2540 +
0.2021i, 0.5302 − 0.7732i} from the reference [9] with a
4-QAM input and an equalizer with length 21. The fig-
ure 4 provides the comparison of our algorithm with CMA,
where each curve corresponds to a different initialization
point(at same distance to the optimal point). As it can be
seen from this figure, the subgradient based algorithm con-
verges at less number of iterations and is less sensitive to the
choice of initial point for the iterations due to convex nature
of its cost function.

7. CONCLUSION

We introduced a novel iterative blind algorithm with a very
simple update rule based on the minimization of l∞ norm
of the output of the equalizer using subgradient iterations.
Due to the convex nature of the l∞ cost function, the conver-
gence problems that exist in CM type algorithms caused by
the local extremum points and arbitrary initialization points
don’t exist. Updates are very simple and fast especially
for DSP systems where equalizer is implemented in hard-
ware. Finally, the iterative algorithm presented in this pa-
per is suitable for sample space (an implicit Higher Order
Statistics method) as well as fractionally spaced channels.
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Fig. 4. Complex Channel:CMA vs. SGBA
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