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ABSTRACT

The Linear Prediction (LP) algorithm can be regarded as one that
leads to the estimation of a set of zero-forcing equalizers. A fi-
nal step in the LP algorithm consists in (linearly) combining these
equalizers to form one that restores the transmitted symbols ISI-
free, unattenuated and not delayed. We show that the way they
were originally combined in not justified. We propose and justify
a different combination of the original LP equalizers. The mod-
ified LP algorithm shows enhanced performances for both equal-
ization and identification tests. In this work, we also comment on
the often questioned robustness of the LP algorithm to channel or-
der over estimation. We argue here that the LP algorithm is truly
robust to order over estimation and we give a formal proof to this.

1. INTRODUCTION

Channel identification and equalization are classic topics in signal
processing. The objective is to identify and/or remedy to the inter-
symbol interference effect of a (linear) channel. They are referred
to as blind if achieved without knowing about the transmitted sym-
bols. They are then based on the statistical properties of these sym-
bols. Those based on Second Order Statistics (SOS) are preferred
because the associated moments are much easier to estimate. SOS-
based blind algorithms are made possible if the channel output is
over sampled and/or received using multiple sensors.

The Linear Prediction (LP) algorithm [10, 2] was among the
first SOS algorithms. It is, in deed, among the most popular, due to
its claimed (but sometimes questioned) robustness to channel order
over estimation. We will be addressing this aspect in the second
part of the paper. In the first part, we partially rewrite the LP al-
gorithm. The original LP algorithm is based on the fact that the
channel output is an auto-regressive process and that the associ-
ated innovation is equal (up to a multiplicative vector) to the trans-
mitted symbol. The latter can, hence, be restored using the linear
predictor, hence (almost) achieving a Zero-Forcing (ZF) equaliza-
tion. The so-computed LP ZF equalizer is obtained by linearly
combining the columns of the predictor. We show that, in fact,
each of these columns can be regarded as a separate ZF equalizer
and each can lead to a different channel estimate. The way they
were combined in the original LP algorithm is not justified. This
is particularly true since we can prove that these ZF equalizers
have different behaviors in the presence of observation noise.

We rewrite the LP algorithm by proposing an alternative linear
combination of the individual ZF equalizers. This modification
is inspired by [1, 5] where the problem of optimally combining
ZF equalizers has been posed and has lead to the introduction of
the Equalization Peak Criterion (EPC). Simulation results confirm
that the modified LP algorithm outperforms the original one for
equalization and also for identification tests.

2. THE CHANNEL MODEL
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Fig. 1. Single input multiple output channel

A fractionally spaced and/or multi-sensor receiver is often mod-
eled by a Single Input Multiple Output (SIMO) scheme as de-
picted in Fig. 1. A set of � filters are driven by a common scalar
input ����. The impulse response of the ��-th filter is given by
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The last equation (where � stands for the identity matrix of appro-
priate dimensions) is valid assuming the symbols to be i.i.d. and
uncorrelated from the white noise components. ��� and ��� refer to
symbol and noise powers, respectively.

3. ZERO-FORCING EQUALIZATION

An �� � ��-order �-delay ZF equalizer � verifies
���� � �� � � � ��� � � � �� for some scalar �. His output

���� � ����� �� � �
�
� ����

has signal and noise parts with respective powers ��� ���� and �������.
The associated MSE on the equalized (� -length) symbol sequence
is defined [4] as
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where � is complex-valued. Following this definition, two equaliz-
ers are equivalent if they are equal up to some multiplicative factor.
A ZF equalizer can also be used to estimate the channel response
[4, (4)]. When this is a no-delay equalizer, we have
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Obviously, any linear combination of ZF equalizers of the same
delay is equally a ZF equalizer of that same delay. Hence, in al-
gorithms where many ZF equalizers are estimated, one is faced
with the problem of choosing the best equalizer within the so-
defined linear subspace. Fortunately, for algorithms such as the
MRE [6] and the GRDA [5], these ZF equalizers are estimated
as eigen vectors associated to some SOS-expressed matrices, they
(as well as any unit-norm linear combination of them) are unit-
norm and so are equivalent from the noise enhancement point of
view. Consequently, the equalizer that maximizes the signal part
(and hence the SNR) at the equalizer output was considered to
be the best one, hence defining the EPC criterion [1, 5]. For-
mally, if ��� � � � ��� are orthonormal ZF equalizers that restore
the transmitted symbol with the same delay and with the attenua-
tion ��� � � � � �� , then the best equalizer built up from ��� � � � ���
is given by ��� � � ��� � ��� � � ����� . ��� � � ����, unknown, is es-
timated in [1] as the eigen vector associated to the unique non-zero
eigenvalue of ��� � � �����
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4. THE LINEAR PREDICTION ALGORITHM

In [10, 2] , the (noise-free) channel output, an 
-order moving av-
erage process, is proved to be an 
-order auto-regressive process.
Furthermore, the associated innovation equals ��������. Conse-
quently, the linear predictor, obtained by solving the Yule-Walker
(YW) equation, restores the transmitted symbols (up to a multi-
plicative factor), hence (almost) achieving a ZF equalization.
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achieves a no-delay ZF equalization. Following [2], the unknown
���� is determined using

�
�
������

���� � 	���� �
�
��

� �	��� � � � 	�
��
�
	� � �

�
��
	�

�	��� � � � 	�
��� (3)

We let  be the unit-norm eigen vector associated to the unique
non-zero eigenvalue � of the matrix in the RHS of (3) or more
conveniently the one associated to the largest eigenvalue of
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is proposed as a no-delay ZF equalizer [2, (14)] that restores the
transmitted symbols not attenuated and ISI-free.

5. A MODIFIED LINEAR PREDICTION ALGORITHM

First, notice that the multiplicative factor ��
�
in (4) has no effect on

the equalization performance. One should simply apply the equal-
izer ��. Second, the equalizer in (4) is obtained by combining
the columns of � following � i.e. following �����. This, in fact,
maximizes (the power of) the signal part at the equalizer output.
By doing so, the SNR is not necessarily maximized because the
equalizers which are the columns of� do not have the same norm
and so do not result in the same noise enhancement.

Consequently, we propose to modify the original LP algorithm
as follows. Let �� be a matrix whose columns form an orthonor-
mal basis of the column span of �. It can be computed using the
Gram-Shmidt algorithm [7]. The complexity of the Gram-Shmidt
algorithm, ������ [3], will not affect significantly the complex-
ity of the modified LP algorithm which is mainly due to the resolu-
tion of the YW equation (�������). In practice, the (sub)channel
responses are expected to be long and their number to be limited.
For every unit-norm vector �, ��� is a no-delay unit-norm ZF
equalizer. The application of the EPC requires the EVD of�
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Hence, � can be chosen as the eigen vector associated to the largest
eigenvalue of
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(6) involves �-sized matrices while (5) involves much larger
������ ones. Smaller sizes imply not only lower complexity (the
matrices have to undertake EVDs), but also less error propagation.
(6) is more efficiently estimated when only a finite sample size is
available.

6. ROBUSTNESS TO ORDER OVER ESTIMATION

The LP algorithm involves the computation of the pseudo-inverse
of the channel correlation matrix. When the channel order is over
estimated, the eigenvalues of the (augmented) signal subspace are
inverted including some zero eigenvalues. This has mislead to con-
clude that the LP algorithm is not robust to channel order over es-
timation [8, 5]. In this section, we prove the contrary.

For a sufficiently large smoothing factor �, �� is full column
rank [11]. We let �� be the �-th largest eigenvalue of the estimate
of �� and ��� the associated unit-norm eigen vector.

Let �� � � be the assumed (over estimated) channel order.�
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cause the �������� lowest eigenvalues asymptotically approach
���, this lead [8, 5] to conclude that the computation of the pseudo-
inverse is badly conditioned and that the LP algorithm is not robust
to order over estimation. The first conclusion is true, but the sec-
ond one is not. In fact, by virtue of (2) and (3), what is required by
the LP algorithm is the computation of
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and so from �������� too. Hence, ����� � � � ������ ���� is close
to zero. Consequently, the fact that we are inverting (the close to
zero) noise subspace eigenvalues is compensated by the fact that
the associated eigen vectors are (almost) orthogonal to
����� � � � ������. Hence, channel order over estimation degrades
the performances of the LP algorithm without resulting in its com-
plete failure. This conclusion holds for the original as well as for
the modified LP algorithm.

7. SIMULATIONS

A series of simulations has been conducted to compare the mod-
ified LP algorithm to the original one. In the simulations, the
channel, taken from [9], is driven by unit-variance i.i.d. 4-QAM
symbols and corrupted by AWG noise. The SNR is defined as
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. The noise power is estimated as the

average of the �� � ��� ��� (�� being the assumed channel or-
der) lowest eigenvalues of the estimated correlation matrix. The
simulation results are averaged over ��� Monte Carlo runs.

An estimated ZF equalizer is tested with a sequence 
���� � � � �

�� � �� of randomly generated source symbols (in the simula-
tions, � � ���). The equalizer outputs ���� � � � � �� � �� are
compared to the transmitted symbols in terms of the MSE defined
as in (1) which can be proved to be equal to [4]
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Identification tests are also conducted. The MSE on the iden-
tified channel response is defined similarly as that on equalized
symbols. The MSE associated to the estimate 		 (whose order ��

is possibly over estimated) of 	 is defined as [5]
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Equalization results, presented in Fig. 2, confirm that the mod-
ified LP algorithm outperforms the original one. The enhancement
is valid for short data as well as asymptotically (cf. Fig. 2.a).
As showed in Fig. 2.b, the improvement is more important for
low SNR where the noise enhancement effect is more significant.
Eventhough there is no evidence of optimality of the EPC criterion
w.r.t. to the estimation of the channel response, an improvement of
the channel estimate is also observed in Fig. 3.a. Finally, we test
the (original and modified) LP algorithm with deliberately over es-
timated values of the channel order. Simulations results, as shown
in Fig. 4, show that such modeling errors result in the deterioration
of the equalization performance and not complete failure of it.

8. CONCLUSION

Contrarily to a number of SOS-based blind identification algo-
rithms such as the subspace algorithm [11, 9], the LP algorithm
first starts by estimating a (zero-forcing) equalizer. This step does
not explicitly require the knowledge of the channel order except
for the computation of the correlation matrix pseudo-inverse. We
here formally prove that order over estimation has no catastrophic
effect on the LP algorithm as was often suspected. Furthermore,
the LP algorithm leads to more than one equalizer. These can be
combined differently than the in original LP algorithm leading to
a new equalizer with better performances in the presence of obser-
vation noise.
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