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Raphaël Gallego, Alexandre Rouxel

{Raphael.Gallego, Alexandre.Rouxel}@wavecom.com

Wavecom S.A.
Advanced Baseband Department

3, Esplanade du Foncet
92442 Issy-les-Moulineaux Cedex, France

Florence Alberge, Pierre Duhamel

{Florence.Alberge, Pierre.Duhamel}@lss.supelec.fr

LSS - CNRS
Signal Processing Department

Plateau de Moulon - 3, rue Joliot-Curie
91192 Gif-sur-Yvette Cedex, France

ABSTRACT

Our work focuses on the semi-blind equalization techniques when
applied to GMSK-based mobile communication systems. Starting
from the works developed in [1], a new semi-blind block algorithm
is proposed to provide reliable communication through a typical
mobile multi-path channel. The algorithm is shown to have perfor-
mances similar to those of the Viterbi algorithm in a fixed setting,
while being more efficient on time-varying situations.

1. INTRODUCTION

In mobile communications systems (MCS), signals are transmitted
through multi-path mixed-phase time-variant channels. Because
of the introduction of distortion in the received signal, state-of-
the-art utilizes a training sequence to estimate the channel param-
eters. Since then, blind equalization methods have been applied
in MCS in order to obtain satisfactory performances without using
any training symbols.

This paper is concerned with semi-blind equalization applied
to GMSK-based mobile communications without using any extra
antenna neither oversampling technique at the receiver.

The GSM norm specifies a maximum speed v (depending on
the frequency of carrier fc) between the transmitter and the re-
ceiver under which the system must guarantee a certain level of
performance. Viterbi-based receivers provide a comfortable per-
formance at this (low) speed but, nowadays, more and more sit-
uations with higher speeds applications are involved. Thus, our
task is as follows: to develop a semi-blind block algorithm that i)
attains equivalent performance w.r.t. the Viterbi algorithm when
time-invariant channels (v = 0 km/h) are used w; and ii) is well
suited for its adaptation in variant channel context, specially in
high speed environments (v � 0 km/h), where the Viterbi-based
receiver can’t afford reliable performance.

The paper is organized as follows. The background and prob-
lem setup are given in Section 2, where the basis of our algorithms
are presented. Our contribution is detailed in Section 3. Section 4
show the behavior of our algorithms when simulating in a simpli-
fied GSM environment. Finally, conclusion and further research
lines are detailed in Section 5.

2. BACKGROUND AND PROBLEM SETUP

2.1. Diversity from derotation

In order to apply blind equalization algorithms that are usually
utilized for linear modulations, a linear approximation of GMSK
modulation is derived. This linear approximation is based on the
Laurent’s decomposition [2]. The general outlines of the method
are presented below.

Let denote sn = ±1 the transmitted binary data. Considering
the GMSK modulation like defined in the GSM norm ([3]), the
received signal can be written as:

xk =
∑

n
hn · sk−n · jk−n (1)

hn = h0 ∗ hc ∗ g (2)

where h0 denotes the first order filter from the GMSK linear de-
composition, hc stands for the physical propagation channel and
g is used for the reception filter. Once a derotation operation is
performed, the received signal results on:

x̂k = j−k · xk =
∑

n
hn · sk−n · j−n =

∑
n

ĥn · sk−n (3)

where ĥn = hn · j−n is the global channel impulse response after
derotation. Taking into account that ĥn is complex and sn a real
BPSK, the derotated signal x̂k sampled at the baud rate can be seen
as the output of a two-subchannel system. Derotation allows the
use of algorithms that are usually applied in a SIMO (Single-Input-
Multiple-Output) model, as in [4] for blind channel identification
or in [5] for GSM semi-blind equalization.

2.2. SIMO Model. Definitions and notations

Thanks to the approximations above, diversity has been extracted
from the rotation technique. Now, we can deal with a SIMO model
with two outputs. Let N denote the number of received symbols,
M the channel order (so M+1 is the length of the channel impulse
response) and L the diversity order (L = 2). Thus, we define:

The transmitted symbols sequence of size (M + N) × 1,

sM+N �
[
s(n), n = −M . . . 0 . . . N − 1

]T

The channel impulse response of size (M + 1) × 1,

h
c
n �

[
hc

n(k), k = M . . . 0, c = {1, . . . , L}
]T

and its SIMO equivalent, of size L · (M + 1) × 1,

hn �
[ [

h
1
n

]T
. . .

[
h

L
n

]T ]T

Finally, the received symbols sequence of size (N) × 1,

X
c
N �

[
x c(n), n = 0 . . . N − 1, c = {1, . . . , L}

]T

and its SIMO equivalent, of size L · (N) × 1,

XN �
[
x 1(0), .., xL(0), . . . , x 1(N − 1), .., xL(N − 1)

]T

(where n is the time index)

Now assume that we have a unique channel impulse response
”viewed” by the transmitted data sM+N , that is, hn = h ∀n. In
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this block approach, the basic filtering equation of a SIMO system
can be written as follows.

XN = TN, M+N (h) · sM+N (4)

where TN, M+N (h) is a Sylvester matrix of size (L ·N)× (M +
N) defined as:

TN, M+N (h) =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1 (M) ... h1 (0) 0 ... 0

h2 (M) ... h2 (0) 0 ... 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 ... 0 h1 (M) ... h1 (0)

0 ... 0 h2 (M) ... h2 (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

2.3. Conditional Maximum Likelihood (CML) approach

2.3.1. Maximum Likelihood approach

Our criterion belongs to the family of Maximum Likelihood (ML)
criteria. If no statistics are assumed for the source, then both sym-
bols and channel need to be estimated by the receiver, leading to a
Deterministic ML (DML) approach. The DML criterion reads:

J DML
B

(
h, sM+N

)
=

∥∥TN, M+N (h) · sM+N − XN

∥∥2
(6)

The SML approach can be understood as ”plugging” the finite
alphabet constraint on s to the DML criterion. Adding new hy-
pothesis improves the performances at the cost of increasing the
number of local minima. The SML criterion is expressed as:

J SML
B

(
h, sM+N

)
=

∥∥TN, M+N (h) · sM+N − XN

∥∥2
, (7)

with sM+N ∈ {−1, +1}

2.3.2. The CML criterion: from DML to SML

The criterion used in our work increases the possible tradeoff be-
tween local minima and performances. Starting from DML ap-
proach, the idea consists of introducing new hypothesis that will
allow to improve the performances while controlling the local min-
ima problem.

In DML approach, both symbols and channel are unknown
variables and the criterion derived from the joint minimization is
non-convex, leading to the apparition of local minima. However,
the criterion is convex w.r.t. each variable (s or h) separately. Fur-
thermore, it has been shown in [1] that, provided the convexity
is property is kept, even if new local minima appear, these local
minima can be controlled.

In our CML approach symbols are considered as random vari-
ables with a given probability density function (pdf), different from
the real one, but reflecting our a priori knowledge of the symbols.
This method has been first introduced by De Carvalho and Slock
in [6] resulting on the GML (Gaussian ML) approach. In our case,
a exponential truncated function is used that keep the above men-
tioned convexity as shown below:

p(s(n)) = 0 if |s(n)| > 1

p(s(n)) = 1
Z

eks2(n) if|s(n)| ≤ 1, p(sM+N ) = Πnp(s(n))

where Z is a normalization factor.
When k → 0, the pdf tends to a constant function on the inter-

val [−1, +1]. When k → ∞, the criterion corresponds to an SML
approach, since symbols are constrained to be ({−1, +1}). The
choice of k follows from a compromise between the quantity of a
priori information used and the respect of the convexity property.
Our preferred value for γ = 2kσ2, with σ2 the noise variance,

is the upper bound for the criterion to remain convex w.r.t. each
variable separately. Thereby, the CML criterion can be written as:

J CML
B

(
h, sM+N

)
=

∥∥TN, M+N (h) · sM+N − XN

∥∥2

−γ ·
∥∥sM+N

∥∥2
, sM+N ∈ CM+N (8)

with γ = λmin

{
TN, M+N (h)HTN, M+N (h)

}
(9)

where λmin(A) denotes the minimum eigenvalue of A and where
CK = {s ∈ R

K ;−1 ≤ si ≤ +1, 1 ≤ i ≤ K}.

3. APPLICATION OF CML ALGORITHMS TO
GMSK-BASED MOBILE COMMUNICATIONS

In practical situations, a burst contains M + N symbols among
which Nu are unknown and Nk are known from the receiver. This
allows the full use of the known symbols in our semi-blind ap-
proach, as presented below.

3.1. CML Block Algorithm (CMLBA)

The block algorithm can be derived from the CML criterion above
and adapted for the semi-blind context. Thus, the semi-blind cri-
terion can be expressed as:

J CML
B

(
h, sNu

)
=

=
∥∥TN, M+N (h)sM+N − XN

∥∥2
− γ

∥∥sNu

∥∥2

=
∥∥[
TN, Nk

(h) | TN, Nu
(h)

] [
sNk

sNu

]
− XN

∥∥2
− γ

∥∥sNu

∥∥2

=
∥∥TN, Nu

(h)sNu
−

(
XN − IN (sNk

)
)∥∥2

− γ
∥∥sNu

∥∥2
(10)

with γ = λmin

{
TN, Nu

(h)HTN, Nu
(h)

}
(11)

and IN (sNk
) = TN, Nk

(h)sNk
(12)

In [7], a new form for the filtering equation (4) is proposed,
that is equivalent to classical one.

XN = UN, M+1(sM+N )h (13)

where UN, M+1(sM+N ) is a Symbols matrix of size (L · N) ×
(L · (M + 1)) defined as:

UN, M+1(sM+N (n)) =

⎛
⎜⎜⎜⎝

IdL

⊗
sM (n)T

IdL

⊗
sM (n − 1)T

...
IdL

⊗
sM (n − N + 1)T

⎞
⎟⎟⎟⎠

where IdL denotes the identity matrix of size L×L and where
⊗

stands for the Kronecker product; this results in:

J CML
B

(
h, sM+N

)
=

=
∥∥UN, M+1(sM+N )h − XN

∥∥2
− γ

∥∥sM+N

∥∥2
(14)

Thus, the block algorithm consists on the separate minimiza-
tion of s and h variables, using an iterative procedure given on the
algorithm that follows:

for k = 1:iteB

ŝ
(k)
Nu

= arg min s
Nu

∈CNu J CML
B

(
ĥ

(k−1), sNu

)
(15)

ŝ
(k)
M+N =

[[
sNk

]T [
ŝ
(k)
Nu

]T ]T

(16)

ĥ
(k) = arg min h J CML

B

(
h, ŝ

(k)
M+N

)
end (17)
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The inequality constraint (for symbols minimization) is re-
solved by a relaxation method (see [8] for details). The most com-
putationally intensive part of the algorithm resides on the optimiza-
tion method, so effective cost and sub-optimal methods should be
used in a real-time application.

3.2. The partitioning procedure

As already explained on the CML criterion, the γ parameter plays
a very important role, because it controls the amount of prior in-
formation taken into account. Thereby, our interest is to achieve
the largest γ parameter as possible. Theorem 1 below show that a
segmentation of (15) into a set of equations increase λmin.

Theorem 1 Let T1 and T2 be two sub-matrices of a matrix T

such that T = [T1|T2] then

λT
min ≤ λT1

min and λT
min ≤ λT2

min

where λT
min resp. λ

Tp

min stands for the smallest eigenvalue of
T

H
T resp. TH

p Tp, p=1,2.

Proof Let N resp. Np be the number of columns of T resp Tp.

λT
min = arg min

v∈CN

v
H
T

H
Tv

vHv
≤

v
H
T

H
Tv

vHv
∀ v ∈ C

N

Let v =
[
v

H
1 0

H
N2

]H
where v1 ∈ C

N1 and 0N2
∈ C

N2 , then

λT
min ≤

v
H
1 T

H
1 T1v1

vH
1 v1

∀ v1 ∈ C
N1

In particular: λT
min ≤ arg min v1∈CN1

vH
1 TH

1 T1v1

vH
1

v1
= λT1

min

The same line of arguments leads to: λT
min ≤ λT2

min

This method is easily extended to more than two partitions. In
this case, the minimum eigenvalues corresponding to the associ-
ated sub-matrices increase, as well as the amount of a priori in-
formation. Of course, the number of columns must remain larger
than the channel order M for the sub-systems to be solvable. So,
the optimal number of columns is M + 1.

Thus, the partitioning procedure consists on the (vertical) di-
vision of the global filtering matrix TN, M+N (h). Apart from the
known symbols, the rest of the matrix who is related to the un-
known symbols is partitioned in P small sub-matrices of M + 1
columns. This procedure not only allows to take profit from the
λmin condition, but also permits to realize P small optimizations
instead of a large one, leading to computational savings.

3.3. CML Block Algorithm w/Partitions (CMLBAP)

The resulting algorithm of the above mentioned procedure is now
based on the following criterion:

J CML
BP

(
h, sNp

)
=

=
∥∥TN, M+N (h)sM+N − XN

∥∥2
− γ

∥∥sNp

∥∥2

=
∥∥TN, Nu

(h)sNu
−

(
XN − IN (sNk)

)∥∥2
− γ

∥∥sNp

∥∥2

=
∥∥[
TN, N1

(h) | . . . | TN, NP
(h)

] ⎡
⎣ sN1

...
sNP

⎤
⎦

−
(
XN − IN (sNk)

)∥∥2
− γ

∥∥sNp

∥∥2

=
∥∥TN, Np

(h)sNp
−

(
XN − IN (sNk) − I

c
N (sNp

)
)∥∥2

−γ
∥∥sNp

∥∥2
, (18)

with: γ = λmin

{
TN, Np

(h)HTN, Np
(h)

}
(19)

I
c

N (sNp
) = TN, N1

(h)sN1
+ . . . + TN, Np−1

(h)sNp−1

+TN, Np+1
(h)sNp+1

+ . . . + TN, NP
(h)sNP

(20)

Index p denotes the partition we deal with. The TNu, Np
(h)

matrix corresponds to the associated channel matrix of the pth par-
tition. P is calculated from the division of the total number of
symbols to be estimated (Nu) by the size of these small matrices
(Np = M + 1). If the calculated P is not a rational number,
the size of the last partition (NP ) is modified for convenience to
fit an integer number of partitions into the Nu symbols. Finally,
I
c

N (s
(p)
Np

) is introduced to simplify notation, and is defined as the
complementary interference for the partition p, that is, the sub-
tracted interference to the partition we deal with, considering the
symbols of the rest of the partitions as known.

The algorithm is similar to the CMLBA one, but the minimiza-
tion of s variable is now realized by P minimizations correspond-
ing to the P small sub-matrices TNu, Np

(h). Iteration k of the
CMLBAP is then:

for p = 1:P

ŝ
(k)
Np

= arg min
s
Np

∈CNp J CML
BP

(
ĥ

(k−1), sNp

)
= arg min

s
Np

∈CNp

∥∥TN, Np
(ĥ(k−1))sNp

−
(
XN − ÎN (sNk) − ÎcN (sNp

)
)∥∥2

− γ̂
∥∥sNp

∥∥2
(21)

with: γ̂ = λmin

{
TN, Np

(ĥ)HTN, Np
(ĥ)

}
(22)

ÎcN (sNp
) = TN, N1

(ĥ(k−1))ŝ
(k)
N1

+ . . .

+TN, Np−1
(ĥ(k−1))ŝ

(k)
Np−1

+ TN, Np+1
(ĥ(k−1))ŝ

(k−1)
Np+1

+ . . . + TN, NP
(ĥ(k−1))ŝ

(k−1)
NP

(23)

ŝ
(k)
Nu

=
[[

ŝ
(k)
N1

]T
. . .

[
ŝ
(k)
NP

]T ]T

(24)

end

The minimization w.r.t. the channel remains unchanged (17).

4. SIMULATION RESULTS

4.1. Simulation conditions

A simplified version of the GSM system is here presented. The
whole GSM burst is divided in two, each one composed of Nk +
Nu symbols. The known symbols of the Training Sequence (TS)
located at the beginning of the semi-burst are used for initializ-
ing all the algorithms. Indeed, a channel estimate (hini) is de-
rived from a straightforward Least Square Estimation (LSE) of this
known sequence. Refer to [9] for details.

Simulation conditions are based in model presented in (1). De-
tails are related at following. Two random binary data (BPSK)
semi-bursts are generated, each one with Nu = 61 symbols. A
pseudo-random sequence of Nk = 26 known symbols corresponds
to the TS. After a rotation operation, the whole burst is then trans-
mitted over a random generated channel (with L = 2) of length
M + 1 = 5. Once a derotation operation is performed by the re-
ceiver, equalization algorithms are applied. Soft decision symbols
are then sliced and compared with the transmitted ones. No cod-
ing techniques are applied. The raw bit (symbol) error rate (Raw
BER) is shown in order to evaluate the performance (see Fig.1).

The simulated channel impulse responses {hn, ∀n}, as de-
fined in (2), are considered as normalized gaussian random vari-
ables.
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BPSK Data Random Channel 

AWG Noise

Rotation

DerotationEqualizerSlicerRaw BER

Fig. 1. The simplified GSM model

4.2. Performance comparison

First, a performance comparison is given when time-invariant chan-
nels (v = 0 km/h) are used (Fig.2). In this situation, the Viterbi
(block) algorithm, as is used in most GSM receivers, excels and is
considered as a reference.
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Static Channel (v=0 Km/h)

snr (dB)

R
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 B
E

R

CMLBA
o

CMLBA
CMLBAP
VTBA

Fig. 2. Performance comparison (time-invariant channel)

As we can observe, the partitioning procedure applied in CML-
BAP provides a substantial gain of performance w.r.t. the CMLBA,
and despite of its reduced complexity. Performances of CMLBA
when any known symbols are used (named CMLBAo in the figure)
is also given to compare the gain obtained by the partitioning pro-
cedure from the gain from the known symbols usage; indeed, just
the ĥini from the TS is used to initialize the algorithm. Further-
more, no degradation is observed when comparing the CMLBAP
to the VTBA (Viterbi Block Algorithm) in the targeted zone (SNR
-Signal to Noise Ratio- under 10 dB). Even more, at low SNR, our
algorithms take some advantage w.r.t. the Viterbi because of the
iterated processing that improves channel estimates, while VTBA
only uses the estimate based on the TS. This behavior is encourag-
ing taking into account that GSM norm is designed for this latest.

Next, a simulation with time-varying channel is shown (Fig.3).
This multi-path fast fading channel follows a sinus profile and can
be considered as a very high speed case, since the simulated con-
ditions (v = 300 km/h and fc = 1800 MHz) are more than two
times faster than the worst case considered by the GSM norm.

As we can see, both algorithms are limited by very fast fading
of the channel, and over a signal to noise ratio larger than 25 dB no
improvement is reached. However, for a raw BER of 8·10−2, that
can be considered as a typical target performance in GSM before
coding, CMLBAP outperforms VTBA with a gain equal to 5 dB.

−5 0 5 10 15 20 25 30
10
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10
0

Time−varying Channel (v=300 km/h, f
c
=1800 MHz)

snr (dB)

R
aw

 B
E

R

VTBA
CMLBAP

Fig. 3. Performance comparison (time-varying channel)

5. CONCLUSION

A new algorithm for semi-blind estimation have been presented
in this paper. From the works on the CML approach proposed
in [1], a new criterion have been developed in order to increase
performances. Thanks to a partitioning procedure and a full us-
age of the all the available symbols, a new block algorithm have
been derived. This new algorithm provides encouraging perfor-
mance when comparing to VTBA used in GSM. Moreover, the
computational cost of the algorithm has been drastically reduced
and it’s well suited for deriving adaptive versions. Simulations on
real GSM environment will be considered in further work. Finally,
these algorithms can be also applied to (E)GPRS systems using the
GMSK modulation.
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