<

A ROBUST ALGORITHM FOR BLIND SPACE-TIME EQUALIZATION

Magno T. M. Silva', Maria D. Miranda®, and Antonio N. Licciardi Jr.>

I Universidade de Sdo Paulo - EPUSP - PTC, Sao Paulo-SP, Brazil
2 Universidade Presbiteriana Mackenzie, Sdo Paulo-SP, Brazil
E-mails: magno@Ics.poli.usp.br, mdm@mackenzie.com.br, newton.licciardi @br.rhodia.com

ABSTRACT

The efficient separation of signals is a frequent problem
in multiuser communication systems. Among many algo-
rithms to blind deconvolution of a multiple-input multiple-
output (MIMO) systems, the one that utilizes higher-order
cumulants has advantages in regards of convergence rate.
Inspired on this algorithm and on a stochastic gradient ap-
proach, we propose an algorithm with capacity of recover-
ing simultaneously all sources, denoted as MU-SWA (Mul-
tiuser Shalvi-Weinstein Algorithm). Based on the steady-
state analysis, recently presented by Luo and Chambers for
the Multiuser Constant Modulus Algorithm, we derive the
expression for the mean-square error of MU-SWA. Simula-
tion results show that MU-SWA presents a more robust be-
havior with respect to convergence rate and tracking capa-
bility when compared to others known algorithms for blind
multiuser equalization.

1. INTRODUCTION

Nowadays, the ever growing demand for mobile communi-
cations is constantly increasing the need for better conver-
gence and improved capacity. A typical problem that fre-
quently arises in multiuser communication systems is the
separation of linear mixtures of signals. In this context, sev-
eral different approaches have been considered. Recently
blind adaptation algorithms for channel equalization using
time-space diversity with multiuser signal separation capac-
ity have been proposed [1, 2]. The Multiuser Constant Mod-
ulus Algorithm (MU-CMA) is based on a stochastic gra-
dient approach [1]. The Quasi-Newton Cross-Correlation
Constant Modulus Algorithm (QN-CCCMA) [2] is based
on Quasi-Newton methods. Compared to MU-CMA, it has
faster convergence rate, but higher complexity. Moreover, it
suffers from problems of numerical instability.

A higher-order cumulant-based algorithm for blind de-
convolution of a MIMO system, capable of extracting the
input signals, was proposed in [3]. In this paper we present
an extension of this algorithm considering the fourth or-
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der cumulant and a stochastic gradient approach. The pro-
posed algorithm, called Multiuser Shalvi-Weinstein Algo-
rithm (MU-SWA), is able to simultaneously recover the in-
put signals. It is compared to MU-CMA and QN-CCCMA.
Based on the MU-CMA steady-state analysis [4], on the en-
ergy conservation relation [5], and on the equivalence be-
tween Godard and Shalvi-Weinstein schemes [6], we pre-
sent a mean-square error (MSE) steady-state analysis for
MU-SWA. Simulation results show good tracking capabil-
ity of the algorithm when compared to others.

In the sequel data model is presented and the fourth or-
der cumulant-based method [7] is revisited. Then we intro-
duce MU-SWA and the MSE steady-state analysis. Next we
present simulation results. We close the paper making some
concluding remarks.

2. ISSUES ON BLIND EQUALIZATION

A MIMO system with N sources and with an antenna ar-
ray which has L > N sensors has been considered. The
source sequences a;(n), ¢ = 1,..., N are assumed zero-
mean, non gaussian, i.i.d., and independent on each other.
The transmitted signals suffer inter-symbol and co-channel
interferences. The channel from the i*" source to the jt"
sensor is modelled by an FIR filter with K. coefficients.
The output of the L sensors are processed with N parallel
space-time FIR equalizers, each one with K; time diversity
and M = L K; taps. The blind equalizer must mitigate
the channel effects without accessing the data training. In a
noise free environment, i*" equalizer’s output can be writ-
ten as y;(n) = wi(n — 1)u(n), where u(n) and w;(n — 1)
are the input and the weight equalizer vectors, respectively.
Now suppose that we wish to extract only the i*" source.
The update equation of the equalizer coefficients can be
done with the Constant Modulus Algorithm (CMA) [8]

w;(n) =w;(n—1) — pe;(n)u(n) ()
in which e;(n) = (Jy;(n)|?> — R$)y;(n) and p is the step
size. Assuming the sources with the same statistics, the ex-
pected modulus is equal for all of them and is defined as
R$ = E{|a(n)|*}/E{|a(n)|?}. This algorithm is derived
as a stochastic gradient method for minimizing the Godard
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cost function

Jo, = E{(ly:(n)]* - R5)*} . @
Another blind equalization criterion is the Super-Exponen-
tial Jspy; = cumyly;(n)]/cumsly;(n)]* where cum;|]

denotes the cumulant of order j of the argument [7, 6]. The
equalizer taps are adjusted to find the most negative value
of Jsg4;, which is equivalent to minimize the cost function
(2). An extremum of Jgpgy; can be approached by using
a gradient search procedure [6]. In the particular step size
choice, the gradient algorithm in the equalizer coefficient
domain can be written as [7, 3, 6]

wi(n) =y 'R7'd;(n) 3)
being R = E{u*(n)u”(n)} the autocorrelation matrix,
d; = E{|y:|?yiu*} — BE{|y:|*}E{y;u*} the higher-order
cumulants, 3 = 2 (= 3) in the complex (real) case, and v a
constant that controls the radial factor of the equalizer [6].
Let v = cumyla(n)]/cumsz[a(n)] = R§ — Bcums[a(n)], a
realizable form of (3) can be done with the estimates

d;(n)=Xd;(n — 1)+ A;(n), and

R'n)=XT"R ' (n-1+ X vn)vi(n), @
where A;(n) = [|yi(n)|* = BE{|yi(n)[*}] yi(n)u* (n),

—1/2
v(n) = R~ Y(n — 1)u(n) ()\ + Hu||%{71(n_1)) / ,
[x||A = x7Ax, and 0 < X\ < 1 is the forgetting fac-
tor. Replacing these estimates in (3), assuming E{y?} =
E{a?}, after some algebraic manipulations, we obtain the
Shalvi-Weinstein Algorithm (SWA) [7]

wi(n) =wi(n — 1)+ v te;(n)R™ Y (n)u*(n).  (5)

Considering —R~1(n)y~! = yu as an adaptation step, it can
be interpreted as a stochastic gradient algorithm like (1).
Considering YyR(n) as a hessian matrix approximation of
(2), it can be interpreted as a Quasi-Newton algorithm.

3. SPACE-TIME EQUALIZATION ALGORITHMS

In the case of joint blind simultaneous recovery of all input
signals, the Godard cost function is given by [1]
N ¢ N 01
_ C(S5)[2
JG—Z JGi+§‘Z ‘ Z |r2](5)‘ (6)
i=1 j=1,j#16=—51

in which Jg; is the cost function (2) for the ith user, ri; (0 )=

E {yi(n)y;(n—0)} and 6; = K; + K. — 1. The second
term of the right side of (6) is introduced to penalize, with
weight £, the cross-correlations between different users [1].
The gradient vector of this cost function related to the i*®
user is given by

Vw.Ja = E{ei(n)u*(n)} +

N 01
52 Y By )@ @

J=L.ij §=—61

A stochastic gradient algorithm can be obtained by using
convenient estimates of the gradient vector. It is usual to es-
timate the cross-correlation r;;(d) with an exponential win-
dow, considering a forgetting factor A, and the other expec-
tations with instantaneous estimates [1]. With these esti-
mates, the stochastic gradient algorithms can be character-
ized by the following equations

w;(n) =w;(n —1) — pu(n)é;(n)u*(n), 8)
in which ¢&;(n) = e;(n) + p;(n) and
N 5

pi(n) = 2 Z Z yj(n)ri; (). ©)

In MU-CMA [1], the adaptation step size is a constant scalar
w(n) = p. In QN-CCCMA [2], the approximation of hes-
sian matrix of the cost function (6) can be interpreted as the
step size. Inspired on (5), another possible candidate for the
step size is u(n) = —y 'R ~!(n) with the inverse auto-
correlation matrix R~!(n) updated as (4). In this case the
algorithm denoted MU-SWA is written as

wi(n) = wi(n — 1) + &(n)R™*(n)u*(n) (10)

with ;(n) = &;(n)/v. It can be interpreted as an extension
of SWA (5) for the multiuser environment with capacity to
simultaneously recover all source sequences.

4. THE MU-SWA STEADY-STATE ANALYSIS

In this section we extend the steady-state analysis of MU-
CMA [4] to MU-SWA. Proofs and justifications of the ap-
proximations used here have been omitted and can be found
in the references [4, 5]. In this analysis, we assume a noise
free environment and that the i'" equalizer converges asymp-
totically to the i source with delay 7. These assumptions
are usual in steady-state analysis [4, 5].

Let w? be the zero-forcing solution for the i'" equalizer
and w;(n — 1) =w? — w;(n — 1). The a priori error for
the i*" equalizer is given by e?(n) = u”(n)w;(n — 1).
One measure of filter performance is the steady-state mean-
square error MSE; = lim,, .o E {|e¢(n)[*} which is the
quantity we wish to determine for MU-SWA.

Considering the adaptation equation of MU-SWA for
the i*? equalizer (10) and subtracting both sides of this equa-
tion from w{, we obtain the error equation

wi(n) = wi(n — 1) — & (n)R™(n)u*(n). (11)
All adaptive schemes of the form (11) obey the energy con-
servation relation and can be described by a lossless map-
ping and a feedback loop [5]. By equating the squared
weighted norms on both sides of (11), using R(n) as a
weighting matrix, we obtain

W () [y + (Ei(n)ef (n)* + &i(n)"ef (n)) =
= [W(n = Dlgm + sn)]es(n)? (12)
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where k(n) = Hu(n)||]21_1(n). By taking expectations of
both sides of (12) and using the same assumptions of [5],
ie, E {||w(n)||;(n)} ~F {||v~v(n - 1)”;(”)} and the in-
dependence between r(n) and |&;(n)|?, we get
E{s@)} E{e0)*} =E{e@)ef @)+ &m) el @)} . (13)
Considering the approximations (eq. (47) and (50) of [4]):
Y’E {|&;(n)*} = auz(n) + K E{|a(n)[*}* and (14)

Efei(n)ei(n)" +ei(n)"ef(n)} =~ 2MSE;,  (15)
with auz(n) = E{|a(n)|® — (R$)?|a(n)|?} and
= C g k) - v )

K
1+ A
Eq. (13) can be rewritten as

MSE; ~ E{;y(g)} {auz(n) + KE{|a(n)]?}*}. (16)

This result is related to MSE; obtained for MU-CMA in [4]
by the following relation

MSE?AU_SWA E {||u(n)\|%71(n)} (17)
MSEMU=CMA ™ B {[[u(n)[?}

Notice that the differences between these MSE;’s are in the

adaptation step, which is a matrix for MU-SWA, and in the

factor ~. It is possible to adjust the parameters of these al-

gorithms to reach the same MSE in steady-state

p =B {u() o} GBI as)

Now assuming E{H“(”)H%{—l(n)} ~ M(1—)\) and re-
placing E{||u(n)||?} = M2, Eq. (18) simplifies to

pr—(1-X\)/(oy), (19)
where o2 is the variance of the input signal [5].
In the single-input single-output (SISO) case, the steady-
state MSE of CMA and SWA can be obtained by making
& = 0 in the expressions of the MIMO case.

5. SIMULATION RESULTS

In this section we verify the validity of the MSE steady-state
analysis for MU-SWA and also compare the performance
of this algorithm to MU-CMA [1] and QN-CCCMA [2].
We consider a MIMO system with N = 2 users, L = 3
sensors, and channel models H;;(z) =ho+ hiz 4+ hoz ™2,
1=1,...,N,j=1,..., L, shown in Table 1. For the time-
varying sub-channel, Hyo of Channel 1, coefficients hg(n),
hi(n), and ho(n) are generated by passing a Gaussian white
noise through a second order Butterworth filter designed to
simulate a fade rate of 0.1 Hz [9].

In order to examine the steady-state MSE of MU-SWA,
we consider 2 sub-equalizers with M = 6 taps and the

Channel 2. We assume a zero mean circularly V29 non-
constant modulus source [7] with statistics E{|a|?} =1.150,
E{|al*} = 1.650, E{|a|®} = 2.626. By fixing £=4 and ini-
tializing the sub-equalizers taps with only two non-null el-
ements in the second and fourth positions respectively, the
steady-state MSE is measured with varying forgetting fac-
tor \. Table 2 shows that simulation results are in excellent
agreement with the analysis. For modulus constant sources,
most of steady-state MSE is due to cross-correlation term.
In this case, there is a relatively large gap between analysis
and simulation, as observed in [4].

To compare the tracking capability of MU-SWA to MU-
CMA [1] and QN-CCCMA [2], we consider 2 sub-equal-
izers with M = 15 taps and the Channel 1. The sub-equal-
izers taps are initialized with only two non-null elements at
fifth and seventh positions, respectively. Fig. 1 shows the
equalizer-2’s output error for MU-CMA, QN-CCCMA and
MU-SWA. The absolute values of the roots of hg(n)z? +
hi(n)x+ ha(n) are shown in Fig.1-d so that bursts of errors
can be associated with rapid changes of these roots. Partic-
ularly, the bursts near iterations 5000, 27000 and 37000 are
due to strong spectral nulls (absolute value equal one is indi-
cated by a straight line). MU-SWA shows the faster conver-
gence and is not affected by all rapid changes of the chan-
nel compared to MU-CMA and QN-CCCMA. The last one
presents the worst tracking capability and suffers with insta-
bility. The corresponding residual interference (RI) curves
are presented in Fig. 2. In this simulation, the adapta-
tion step size of MU-CMA was adjusted to reach the same
steady-state MSE of MU-SWA using (19), and the param-
eter o of QN-CCCMA was chosen to ensure faster conver-
gence of this algorithm without introducing instability. Al-
though this channel was not very realistic, it is interesting
to compare the behavior of the algorithms in critical situ-
ations: spectral nulls and rapid changes. About the stabil-
ity, the hessian matrix of QN-CCCMA can lose its positive
definite nature which causes divergence [2]. On the other
hand, MU-SWA is more robust although in order to ensure
its stability and good tracking capability, the forgetting fac-
tor must be properly chosen.

Table 3 shows the computational complexity of the al-
gorithms. MU-SWA requires less operations at each itera-
tion than QN-CCCMA. It is relevant to notice that the first
does not require square root operations and has less divi-
sions than the other one. Comparing it to MU-CMA, both
algorithms have a higher computational complexity, which
is the price for faster convergence.

6. CONCLUSIONS

We have proposed an extension of the Shalvi-Weinstein al-
gorithm for multiuser environments with capacity of simul-
taneous recovery of all sources. Based on the MU-CMA
steady-state analysis we derived the expression for MSE
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in steady-state which has good agreement with experimen-
tal results for non constant modulus sources. By means of
simulations we showed that MU-SWA has a better tracking
capability than MU-CMA and QN-CCCMA. Moreover, it
presents less operations and is more stable than the latter.
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H;; of Channel 1 H;; of Channel 2
ij ho hy ha ho hy
11 | —0.50 | 4+0.48 | —0.03 | —0.6 +1.2
21 | +0.15 | —0.03 | +0.10 | +0.1 -0.2
12 | —=0.26 | —0.44 | +0.19 | +0.5 -1.0
13 | +1.00 | —1.00 | +0.41 | +0.4 —0.2
23 | +1.00 | +1.60 | +0.68 | —0.1 +0.4

Table 1. Communication channel models.
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Fig. 1. Equalizer-2 output erros of a) MU-CMA (u =
0.001, € = 3), b) QN-CCCMA (o = 0.01, e = 0.5, £ = 3),
¢) MU-SWA (A = 0.995, £ = 3) d) Absolute roots value of
the polynomial ho(n)x? + hy(n)x + ha(n).
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iterations x 10%

Fig. 2. RI curves for equalizer-2 considering MU-CMA
(uw = 0.001, ¢ = 3), QN-CCCMA (a0 = 0.01, ¢ = 0.5,
& = 3), and MU-SWA (A = 0.995, £ = 3). For 2PAM,
N=2, L=3, M=15, SNR=30 dB, and Channel 1.

A MSE analysis | MSE simulation Op. QN-CCCMA MU-SWA MU-CMA
0.99000 | 1.16 x 1072 1.09 x 1072 X 6M2+M(N+D | 4M2+M(@2N+ | M(N+1)+
0.99500 | 5.50 x 1073 6.10 x 1073 +1)42D+3N+2 | +1)+N(8D+6) | +N(3D+6)
0.99900 | 1.00 x 1073 1.10 x 1073 = 4 1 -
0.99950 | 5.21 x 1074 6.03 x 1074 SQRT M - -
0.99975 | 2.60 x 10~4 2.55 x 1074

Table 2. MSE of V29 at equalizer-2 output.

Table 3. Computational complexity of the algorithms for
real signals, D=(N-1)(261+1).
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