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ABSTRACT

The efficient separation of signals is a frequent problem

in multiuser communication systems. Among many algo-

rithms to blind deconvolution of a multiple-input multiple-

output (MIMO) systems, the one that utilizes higher-order

cumulants has advantages in regards of convergence rate.

Inspired on this algorithm and on a stochastic gradient ap-

proach, we propose an algorithm with capacity of recover-

ing simultaneously all sources, denoted as MU-SWA (Mul-

tiuser Shalvi-Weinstein Algorithm). Based on the steady-

state analysis, recently presented by Luo and Chambers for

the Multiuser Constant Modulus Algorithm, we derive the

expression for the mean-square error of MU-SWA. Simula-

tion results show that MU-SWA presents a more robust be-

havior with respect to convergence rate and tracking capa-

bility when compared to others known algorithms for blind

multiuser equalization.

1. INTRODUCTION

Nowadays, the ever growing demand for mobile communi-

cations is constantly increasing the need for better conver-

gence and improved capacity. A typical problem that fre-

quently arises in multiuser communication systems is the

separation of linear mixtures of signals. In this context, sev-

eral different approaches have been considered. Recently

blind adaptation algorithms for channel equalization using

time-space diversity with multiuser signal separation capac-

ity have been proposed [1, 2]. The Multiuser Constant Mod-

ulus Algorithm (MU-CMA) is based on a stochastic gra-

dient approach [1]. The Quasi-Newton Cross-Correlation

Constant Modulus Algorithm (QN-CCCMA) [2] is based

on Quasi-Newton methods. Compared to MU-CMA, it has

faster convergence rate, but higher complexity. Moreover, it

suffers from problems of numerical instability.

A higher-order cumulant-based algorithm for blind de-

convolution of a MIMO system, capable of extracting the

input signals, was proposed in [3]. In this paper we present

an extension of this algorithm considering the fourth or-
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der cumulant and a stochastic gradient approach. The pro-

posed algorithm, called Multiuser Shalvi-Weinstein Algo-

rithm (MU-SWA), is able to simultaneously recover the in-

put signals. It is compared to MU-CMA and QN-CCCMA.

Based on the MU-CMA steady-state analysis [4], on the en-

ergy conservation relation [5], and on the equivalence be-

tween Godard and Shalvi-Weinstein schemes [6], we pre-

sent a mean-square error (MSE) steady-state analysis for

MU-SWA. Simulation results show good tracking capabil-

ity of the algorithm when compared to others.

In the sequel data model is presented and the fourth or-

der cumulant-based method [7] is revisited. Then we intro-

duce MU-SWA and the MSE steady-state analysis. Next we

present simulation results. We close the paper making some

concluding remarks.

2. ISSUES ON BLIND EQUALIZATION

A MIMO system with N sources and with an antenna ar-

ray which has L > N sensors has been considered. The

source sequences ai(n), i = 1, . . . , N are assumed zero-

mean, non gaussian, i.i.d., and independent on each other.

The transmitted signals suffer inter-symbol and co-channel

interferences. The channel from the ith source to the jth

sensor is modelled by an FIR filter with Kc coefficients.

The output of the L sensors are processed with N parallel

space-time FIR equalizers, each one with Kt time diversity

and M = LKt taps. The blind equalizer must mitigate

the channel effects without accessing the data training. In a

noise free environment, ith equalizer’s output can be writ-

ten as yi(n) = wT
i (n− 1)u(n), where u(n) and wi(n− 1)

are the input and the weight equalizer vectors, respectively.

Now suppose that we wish to extract only the ith source.

The update equation of the equalizer coefficients can be

done with the Constant Modulus Algorithm (CMA) [8]

wi(n) = wi(n − 1) − µei(n)u(n) (1)

in which ei(n) = (|yi(n)|2 − Ra
2)yi(n) and µ is the step

size. Assuming the sources with the same statistics, the ex-

pected modulus is equal for all of them and is defined as

Ra
2 = E{|a(n)|4}/E{|a(n)|2}. This algorithm is derived

as a stochastic gradient method for minimizing the Godard
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cost function

JGi
= E

{
(|yi(n)|2 − Ra

2)2
}

. (2)

Another blind equalization criterion is the Super-Exponen-

tial JSE4i = cum4[yi(n)]/cum2[yi(n)]2 where cumj [·]
denotes the cumulant of order j of the argument [7, 6]. The

equalizer taps are adjusted to find the most negative value

of JSE4i, which is equivalent to minimize the cost function

(2). An extremum of JSE4i can be approached by using

a gradient search procedure [6]. In the particular step size

choice, the gradient algorithm in the equalizer coefficient

domain can be written as [7, 3, 6]

wi(n) = γ−1R−1di(n) (3)

being R = E {u∗(n)uT (n)} the autocorrelation matrix,

di = E{|yi|2yiu∗} − βE{|yi|2}E{yiu∗} the higher-order

cumulants, β = 2 (= 3) in the complex (real) case, and γ a

constant that controls the radial factor of the equalizer [6].

Let γ = cum4[a(n)]/cum2[a(n)] = Ra
2 − βcum2[a(n)], a

realizable form of (3) can be done with the estimates

di(n)=λdi(n − 1)+ ∆i(n), and

R−1(n) = λ−1R−1(n − 1) + λ−1v(n)vH(n), (4)

where ∆i(n) =
[|yi(n)|2−βE{|yi(n)|2}] yi(n)u∗(n),

v(n) = R−1(n − 1)u(n)
(
λ + ‖u‖2

R−1(n−1)

)−1/2

,

‖x‖2
A = xHAx, and 0 � λ < 1 is the forgetting fac-

tor. Replacing these estimates in (3), assuming E{y2
i } =

E{a2
i }, after some algebraic manipulations, we obtain the

Shalvi-Weinstein Algorithm (SWA) [7]

wi(n) = wi(n − 1) + γ−1ei(n)R−1(n)u∗(n). (5)

Considering −R−1(n)γ−1 = µ as an adaptation step, it can

be interpreted as a stochastic gradient algorithm like (1).

Considering γR(n) as a hessian matrix approximation of

(2), it can be interpreted as a Quasi-Newton algorithm.

3. SPACE-TIME EQUALIZATION ALGORITHMS

In the case of joint blind simultaneous recovery of all input

signals, the Godard cost function is given by [1]

JG =
N∑

i=1

⎡
⎣JGi +

ξ

2

N∑
j=1,j �=i

δ1∑
δ=−δ1

|rij(δ)|2
⎤
⎦ (6)

in which JGi is the cost function (2) for the ith user, rij(δ) =
E

{
yi(n)y∗

j (n − δ)
}

and δ1 = Kt + Kc − 1. The second

term of the right side of (6) is introduced to penalize, with

weight ξ, the cross-correlations between different users [1].

The gradient vector of this cost function related to the ith

user is given by

∇∇∇wi
JG = E {ei(n)u∗(n)}+

+
ξ

2

N∑
j=1,i�=j

δ1∑
δ=−δ1

E {yj(n)u∗(n)} rij(δ). (7)

A stochastic gradient algorithm can be obtained by using

convenient estimates of the gradient vector. It is usual to es-

timate the cross-correlation rij(δ) with an exponential win-

dow, considering a forgetting factor λ, and the other expec-

tations with instantaneous estimates [1]. With these esti-

mates, the stochastic gradient algorithms can be character-

ized by the following equations

wi(n) = wi(n − 1) − µ(n)ĕi(n)u∗(n), (8)

in which ĕi(n) = ei(n) + ρi(n) and

ρi(n) =
ξ

2

N∑
j=1,i�=j

δ1∑
δ=−δ1

yj(n)rij(δ). (9)

In MU-CMA [1], the adaptation step size is a constant scalar

µ(n) = µ. In QN-CCCMA [2], the approximation of hes-

sian matrix of the cost function (6) can be interpreted as the

step size. Inspired on (5), another possible candidate for the

step size is µ(n) = −γ−1R−1(n) with the inverse auto-

correlation matrix R−1(n) updated as (4). In this case the

algorithm denoted MU-SWA is written as

wi(n) = wi(n − 1) + ēi(n)R−1(n)u∗(n) (10)

with ēi(n) = ĕi(n)/γ. It can be interpreted as an extension

of SWA (5) for the multiuser environment with capacity to

simultaneously recover all source sequences.

4. THE MU-SWA STEADY-STATE ANALYSIS

In this section we extend the steady-state analysis of MU-

CMA [4] to MU-SWA. Proofs and justifications of the ap-

proximations used here have been omitted and can be found

in the references [4, 5]. In this analysis, we assume a noise

free environment and that the ith equalizer converges asymp-

totically to the ith source with delay τ i
d. These assumptions

are usual in steady-state analysis [4, 5].

Let wo
i be the zero-forcing solution for the ith equalizer

and w̃i(n − 1) = wo
i − wi(n − 1). The a priori error for

the ith equalizer is given by ea
i (n) = uT (n)w̃i(n − 1).

One measure of filter performance is the steady-state mean-

square error MSEi = limn→∞ E
{|ea

i (n)|2} which is the

quantity we wish to determine for MU-SWA.

Considering the adaptation equation of MU-SWA for

the ith equalizer (10) and subtracting both sides of this equa-

tion from wo
i , we obtain the error equation

w̃i(n) = w̃i(n − 1) − ēi(n)R−1(n)u∗(n). (11)

All adaptive schemes of the form (11) obey the energy con-

servation relation and can be described by a lossless map-

ping and a feedback loop [5]. By equating the squared

weighted norms on both sides of (11), using R(n) as a

weighting matrix, we obtain

‖w̃(n)‖2
R(n) + (ēi(n)ea

i (n)∗ + ēi(n)∗ea
i (n)) =

= ‖w̃(n − 1)‖2
R(n) + κ(n)|ēi(n)|2 (12)
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where κ(n) = ‖u(n)‖2
R−1(n). By taking expectations of

both sides of (12) and using the same assumptions of [5],

i.e., E
{
‖w̃(n)‖2

R(n)

}
≈ E

{
‖w̃(n − 1)‖2

R(n)

}
and the in-

dependence between κ(n) and |ēi(n)|2, we get

E {κ(n)}E
{|ēi(n)|2

}
=E {ēi(n)ea

i (n)∗+ ēi(n)∗ea
i (n)} . (13)

Considering the approximations (eq. (47) and (50) of [4]):

γ2E
{|ēi(n)|2} ≈ aux(n) + K E{|a(n)|2}3 and (14)

E {ēi(n)ea
i (n)∗ + ēi(n)∗ea

i (n)} ≈ 2MSEi, (15)

with aux(n) = E{|a(n)|6 − (Ra
2)2|a(n)|2} and

K =
ξ2

4
[2 (Kt + Kc) − 1]

1 − λ

1 + λ
(N − 1),

Eq. (13) can be rewritten as

MSEi ≈ E {κ(n)}
2γ2

{
aux(n) + KE{|a(n)|2}3

}
. (16)

This result is related to MSEi obtained for MU-CMA in [4]

by the following relation

MSEMU−SWA
i

MSEMU−CMA
i

≈ −
E

{
‖u(n)‖2

R−1(n)

}
γµE {‖u(n)‖2} . (17)

Notice that the differences between these MSEi’s are in the

adaptation step, which is a matrix for MU-SWA, and in the

factor γ. It is possible to adjust the parameters of these al-

gorithms to reach the same MSE in steady-state

µ ≈ −E
{
‖u(n)‖2

R−1(n)

}(
γE{‖u(n)‖2})−1

. (18)

Now assuming E
{
‖u(n)‖2

R−1(n)

}
≈ M(1 − λ) and re-

placing E{‖u(n)‖2} = Mσ2
u, Eq. (18) simplifies to

µ ≈ −(1 − λ)/(γσ2
u), (19)

where σ2
u is the variance of the input signal [5].

In the single-input single-output (SISO) case, the steady-

state MSE of CMA and SWA can be obtained by making

ξ = 0 in the expressions of the MIMO case.

5. SIMULATION RESULTS

In this section we verify the validity of the MSE steady-state

analysis for MU-SWA and also compare the performance

of this algorithm to MU-CMA [1] and QN-CCCMA [2].

We consider a MIMO system with N = 2 users, L = 3
sensors, and channel models Hij(z)=h0+h1z

−1+h2z
−2,

i=1,. . . , N , j = 1, . . . , L, shown in Table 1. For the time-

varying sub-channel, H22 of Channel 1, coefficients h0(n),
h1(n), and h2(n) are generated by passing a Gaussian white

noise through a second order Butterworth filter designed to

simulate a fade rate of 0.1 Hz [9].

In order to examine the steady-state MSE of MU-SWA,

we consider 2 sub-equalizers with M = 6 taps and the

Channel 2. We assume a zero mean circularly V29 non-

constant modulus source [7] with statistics E{|a|2}=1.150,

E{|a|4}= 1.650, E{|a|6}= 2.626. By fixing ξ=4 and ini-

tializing the sub-equalizers taps with only two non-null el-

ements in the second and fourth positions respectively, the

steady-state MSE is measured with varying forgetting fac-

tor λ. Table 2 shows that simulation results are in excellent

agreement with the analysis. For modulus constant sources,

most of steady-state MSE is due to cross-correlation term.

In this case, there is a relatively large gap between analysis

and simulation, as observed in [4].

To compare the tracking capability of MU-SWA to MU-

CMA [1] and QN-CCCMA [2], we consider 2 sub-equal-

izers with M = 15 taps and the Channel 1. The sub-equal-

izers taps are initialized with only two non-null elements at

fifth and seventh positions, respectively. Fig. 1 shows the

equalizer-2’s output error for MU-CMA, QN-CCCMA and

MU-SWA. The absolute values of the roots of h0(n)x2 +
h1(n)x+h2(n) are shown in Fig.1-d so that bursts of errors

can be associated with rapid changes of these roots. Partic-

ularly, the bursts near iterations 5000, 27000 and 37000 are

due to strong spectral nulls (absolute value equal one is indi-

cated by a straight line). MU-SWA shows the faster conver-

gence and is not affected by all rapid changes of the chan-

nel compared to MU-CMA and QN-CCCMA. The last one

presents the worst tracking capability and suffers with insta-

bility. The corresponding residual interference (RI) curves

are presented in Fig. 2. In this simulation, the adapta-

tion step size of MU-CMA was adjusted to reach the same

steady-state MSE of MU-SWA using (19), and the param-

eter α of QN-CCCMA was chosen to ensure faster conver-

gence of this algorithm without introducing instability. Al-

though this channel was not very realistic, it is interesting

to compare the behavior of the algorithms in critical situ-

ations: spectral nulls and rapid changes. About the stabil-

ity, the hessian matrix of QN-CCCMA can lose its positive

definite nature which causes divergence [2]. On the other

hand, MU-SWA is more robust although in order to ensure

its stability and good tracking capability, the forgetting fac-

tor must be properly chosen.

Table 3 shows the computational complexity of the al-

gorithms. MU-SWA requires less operations at each itera-

tion than QN-CCCMA. It is relevant to notice that the first

does not require square root operations and has less divi-

sions than the other one. Comparing it to MU-CMA, both

algorithms have a higher computational complexity, which

is the price for faster convergence.

6. CONCLUSIONS

We have proposed an extension of the Shalvi-Weinstein al-

gorithm for multiuser environments with capacity of simul-

taneous recovery of all sources. Based on the MU-CMA

steady-state analysis we derived the expression for MSE
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in steady-state which has good agreement with experimen-

tal results for non constant modulus sources. By means of

simulations we showed that MU-SWA has a better tracking

capability than MU-CMA and QN-CCCMA. Moreover, it

presents less operations and is more stable than the latter.
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Hij of Channel 1 Hij of Channel 2

ij h0 h1 h2 h0 h1

11 −0.50 +0.48 −0.03 −0.6 +1.2
21 +0.15 −0.03 +0.10 +0.1 −0.2
12 −0.26 −0.44 +0.19 +0.5 −1.0
22 h0(n) h1(n) h2(n) −0.6 +0.9
13 +1.00 −1.00 +0.41 +0.4 −0.2
23 +1.00 +1.60 +0.68 −0.1 +0.4

Table 1. Communication channel models.

λ MSE analysis MSE simulation

0.99000 1.16 × 10−2 1.09 × 10−2

0.99500 5.50 × 10−3 6.10 × 10−3

0.99900 1.00 × 10−3 1.10 × 10−3

0.99950 5.21 × 10−4 6.03 × 10−4

0.99975 2.60 × 10−4 2.55 × 10−4

Table 2. MSE of V29 at equalizer-2 output.
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Fig. 1. Equalizer-2 output erros of a) MU-CMA (µ =
0.001, ξ = 3), b) QN-CCCMA (α = 0.01, ε = 0.5, ξ = 3),

c) MU-SWA (λ = 0.995, ξ = 3) d) Absolute roots value of

the polynomial h0(n)x2 + h1(n)x + h2(n).
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Fig. 2. RI curves for equalizer-2 considering MU-CMA

(µ = 0.001, ξ = 3), QN-CCCMA (α = 0.01, ε = 0.5,

ξ = 3), and MU-SWA (λ = 0.995, ξ = 3). For 2PAM,

N=2, L=3, M=15, SNR=30 dB, and Channel 1.

Op. QN-CCCMA MU-SWA MU-CMA

× 6M2+M(N+D 4M2+M(2N+ M(N+1)+

+1)+2D+3N+2 +1)+N(3D+6) +N(3D+6)

÷ 4 1 −
SQRT M − −

Table 3. Computational complexity of the algorithms for

real signals, D=(N−1)(2δ1+1).
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