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ABSTRACT

Channel estimation for single-input multiple-output
(SIMO) time-invariant or slowly time-varying channels was
recently considered in [11] using superimposed training.
A periodic (non-random) training sequence is arithmeti-
cally added (superimposed) at a low power to the infor-
mation sequence at the transmitter before modulation and
transmission. In [11], the channel is estimated using only
the first-order statistics of the data under the assumption
that the superimposed training sequence at the receiver is
time-synchronized with its transmitted counterpart. In this
paper we remove this assumption of synchronization and
propose a novel approach to superimposed training syn-
chronization. An illustrative computer simulation example
is presented.

1. INTRODUCTION

Consider an SIMO (single-input multiple-output) FIR (fi-
nite impulse response) linear channel with N outputs. Let
{s(n)} denote a scalar sequence which is input to the SIMO
channel with discrete-time impulse response {h(l)}. The
vector channel may be the result of multiple receive anten-
nas and/or oversampling at the receiver. Then the symbol-
rate, channel output vector is given by

x(n) :=

L∑
l=0

h(l)s(n − l). (1)

The noisy measurements of x(n) are given by ({v(n)} is
possible nonzero-mean [11], temporally and spatially white,
Gaussian)

y(n) = x(n) + v(n). (2)

A main objective in communications is to recover s(n)
given noisy {x(n)}. In several approaches this requires
knowledge of the channel impulse response [10], [8]. In
training-based approach, s(n) = c(n) = training sequence
(known to the receiver) for (say) n = 0, 1, · · · , Mt − 1 and
s(n) for n > Mt − 1 is the information sequence (unknown
apriori to the receiver) [10], [8]. Therefore, given c(n)
and corresponding noisy x(n), one estimates the channel
via least-squares and related approaches. For time-varying
channels, one has to send training signal frequently and
periodically to keep up with the changing channel. This
wastes resources. An alternative is to estimate the channel
based solely on noisy x(n) exploiting statistical and other
properties of {s(n)} [10], [8]. This is the blind channel es-
timation approach. In semi-blind approaches, there is a
training sequence but one uses the non-training based data
also to improve the training-based results: it uses a com-
bination of training and blind cost functions. This allows
one to shorten the training period. Optimal placement and
performance lower bounds for semi-blind approaches are in
[1] and [2]. More recently a superimposed training based
approach has been explored where one takes

s(n) = b(n) + c(n), (3)
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{b(n)} is the information sequence and {c(n)} is a training
(pilot) sequence added (superimposed) at a low power to
the information sequence at the transmitter before modula-
tion and transmission. There is no loss in information rate.
On the other hand, some useful power is wasted in superim-
posed training which could have otherwise been allocated
to the information sequence. Superimposed training-based
approaches have been discussed in [4], [5] and [7] for SISO
systems. The UTRA specification for 3G systems [6] allows
for a spread pilot (superimposed) sequence in the base sta-
tion’s common pilot channel, suitable for downlinks. Peri-
odic superimposed training for channel estimation via first-
order statistics for SISO systems have been discussed in [12]
and [11]. In [3] performance bounds for training and super-
imposed training-based semiblind SISO channel estimation
for time-varying flat fading channels have been discussed.

Objectives and Contributions: In [11], the chan-
nel is estimated using only the first-order statistics of the
data under the assumption that the superimposed train-
ing sequence at the receiver is time-synchronized with its
transmitted counterpart. In this paper we remove this as-
sumption of synchronization and propose a novel approach
to superimposed training synchronization. Synchronization
issues have not been considered in [12] (or in [4], [5], [7], and
[3]).

Notation: Superscripts H, T and † denote the complex
conjugate transpose, the transpose and the Moore-Penrose
pseudo-inverse operations, respectively. δ(τ) is the Kro-
necker delta and IN is the N × N identity matrix. The
symbol ⊗ denotes the Kronecker product.

2. FIRST-ORDER STATISTICS-BASED
SOLUTION OF [11]

Assume the following:

(H1) The information sequence {b(n)} is zero-mean, white
with E{|b(n)|2} = 1.

(H2) The measurement noise {v(n)} is nonzero-mean
(E{v(n)} = m), white, uncorrelated with {b(n)}, with
E{[v(n+τ)−m][v(n)−m]H} = σ2

vINδ(τ). The mean
vector m is unknown.

(H3) The superimposed training sequence c(n) = c(n+mP )
∀m, n is a non-random periodic sequence with period
P .

By (H3), we have cm := 1
P

∑P−1

n=0
c(n)e−jαmn,

c(n) =

P−1∑
m=0

cmejαmn ∀n, αm := 2πm/P. (4)

The coefficients cm’s are known at the receiver since {c(n)}
is known. We have

E{y(n)} =

P−1∑
m=0

[
L∑

l=0

cmh(l)e−jαml

]
︸ ︷︷ ︸

=:dm

ejαmn + m. (5)
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The sequence E{y(n)} is periodic with cycle frequencies
αm, 0 ≤ m ≤ P − 1. A mean-square (m.s.) consistent

estimate d̂m of dm, for αm �= 0, follows as

d̂m =
1

T

T∑
n=1

y(n)e−jαmn. (6)

As T → ∞, d̂m → dm m.s. if αm �= 0 and d̂0 → d0 + m
m.s. if αm = 0.

It is established in [11] that given dm for 1 ≤ m ≤ P −1,
we can (uniquely) estimate h(l)’s if P ≥ L + 2, αm �= 0,
and cm �= 0 ∀m �= 0. Since m is unknown, we will omit the
term m = 0 for further discussion. Define

V :=

⎡⎢⎢⎣
1 e−jα1 · · · e−jα1L

1 e−jα2 · · · e−jα2L

...
...

...
...

1 e−jαP−1 · · · e−jαP−1L

⎤⎥⎥⎦
(P−1)×(L+1)

, (7)

H :=
[

hH(0) hH(1) · · · hH(L)
]H

, [N(L + 1)] × 1,

(8)

D :=
[

dH
1 dH

2 · · · dH
P−1

]H
, [N(P − 1)] × 1, (9)

C := (diag{c1, c2, · · · , cP−1}V)︸ ︷︷ ︸
=:V

⊗IN . (10)

Omitting the term m = 0 and using the definition of dm

from (5), it follows that

CH = D. (11)

It is shown in [11] that if P − 1 ≥ L + 1 and αi’s are
distinct, rank(C) = N(L + 1); hence, we can determine

h(l)’s uniquely. Define D̂ as in (9) with dm’s replaced with

d̂m’s. Then we have the channel estimate

Ĥ = (CHC)−1CHD̂. (12)

Lemma 1. If P ≥ L+2 and cm �= 0 ∀m �= 0, then (11)
has a unique solution. •

3. SYNCHRONIZATION ISSUES

Implicit in the procedure of Sec. 2 is time-synchronization of
{c(n)} at the receiver with that at the transmitter. Suppose
that (compare with (5))

E{y(n)} =

L∑
l=0

h(l)c(n − l + n0) + m

=

P−1∑
m=0

[
L∑

l=0

cmh(l)e−jαml

]
ejαm(n+n0) + m (13)

where we allow an offset n0 in c(n) at the transmitter
(0 ≤ n0 ≤ P − 1 : mod P offset for obvious reasons). At
the receiver n0 is unknown and needs to be accounted for,
otherwise the approach of [11] will (likely) fail. Define

d̂(i)
m :=

1

T

T∑
n=1

y(n)e−jαm(n+i). (14)

With respect to (13), we have d̂
(n0)
m → dm m.s. Our objec-

tive is to devise a method which will pick the correct i in
(14), given the results for 0 ≤ i ≤ P − 1.

Define

D(i) :=
[

d̂
(i)H
1 d̂

(i)H
2 · · · d̂

(i)H
P−1

]H
, (15)

and
Ĥ(i) = (CHC)−1CHD̂(i). (16)

With ĥ(i)(l) denoting the channel estimate from (16), define

ỹ(i)(n) := y(n) −
L∑

l=0

ĥ(i)(l)c(n + i − l). (17)

It then follows that (h(i)(l) is the “true” value of ĥ(i)(l))

E{ỹ(i)(n)} ≈ m +

L∑
l=0

[h(l)c(n + n0 − l)

−h(i)(l)c(n + i − l)
]

=
{

m if i = n0

m+? if i �= n0.
(18)

For i = n0, E{ỹ(i)(n)} is a constant, therefore, has no
components with nonzero power at cycle frequencies αm,
m = 1, 2, · · · , P − 1. What about i �= n0? What are the
h(i)(l)’s for which E{ỹ(i)(n)} = m′ ∀n, where m′ is some
constant?

Suppose that E{ỹ(i)(n)} = m′ ∀n. From (4) and (18),
we then have

P−1∑
m=0

[
L∑

l=0

cm

(
h(l)e−jαm(l−n0) − h(i)(l)e−jαm(l−i)

)]
ejαmn

= m′ − m. (19)

If cm �= 0 ∀m, then for m = 1, 2, · · · , P − 1, (19) implies
that

L∑
l=0

h(l)e−jαml =

L∑
l=0

h(i)(l)e−jαml ejαm(i−n0)︸ ︷︷ ︸
ejαmk

(20)

where k := i − n0. Define

vl := [e−jα1l, e−jα2l, · · · , e−jαP−1l]T . (21)

Let H(i) denote H in (8) but with h(l) replaced with h(i)(l).
Define

Σk := diag
{
ejα1k, ejα2k, · · · , ejαP−1k

}
, (22)

V(k) := [v−k, v−k+1, · · · ,v−k+L], ṽl = vl ⊗ IN . (23)

By (20), we have(
V(0) ⊗ IN

)
H =

(
V(k) ⊗ IN

)
H(i), V(k) := ΣkV

(0). (24)

By the nature of αm’s and the definition of vl, we have

vl = vl modP . (25)

Also V(0), hence V(k), is Vandermonde with rank L + 1
(≤ P − 1); therefore, rank(V(k) ⊗ IN ) = N(L + 1) ∀k.

Recall from Sec. 2 that we have L ≤ P − 2 for channel
identifiability. By (20), only (i−n0)modP is relevant since
αm = 2πm/P , m = 0, 1, · · · , P − 1. Therefore, we will take
k = (i − n0)modP ; hence P − 1 ≥ k ≥ 0. For k = 0, (19)

holds true for h(i)(l) = h(l), and this solution is unique (see
Sec. 2). What about k = 1, 2, · · · , P −1? We assume that
P ≥ 2L + 3. First an auxiliary result.
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Prop. 1. Rank([ṽ0, · · · , ṽn, ṽn+2, · · · , ṽP−1]) = N(P −
1) for any 0 ≤ n ≤ P − 3.
Proof: See the Appendix. •

We now turn to solutions to (19) under the assumption
that P ≥ 2L + 3.

Case 1: L − k ≥ 0. Since 1 ≤ k ≤ L, we have P − k ≥
P − L ≥ 2L + 3 − L = L + 3. Eqns. (20)- (25) imply that

0 = A :=

L∑
l=0

ṽlh(l) −
L∑

l=0

ṽl−kh
(i)(l) (26)

=

L∑
l=0

ṽlh(l)−
L−k∑
j=0

ṽjh
(i)(j +k)−

−1∑
j=−k

ṽjh
(i)(j +k). (27)

Noting that (see (25))

−1∑
j=−k

ṽjh
(i)(j + k) =

−1∑
j=−k

ṽj+P h(i)(j + k),

(27) may be rewritten as

A =

L−k∑
l=0

ṽl[h(l) − h(i)(l + k)] +

L∑
l=L−k+1

ṽlh(l)

−
P−1∑

l=P−k

ṽlh
(i)(l + k − P ) = 0. (28)

Since P − k ≥ L + 3, we have P − k−L ≥ 3. Therefore, by
Prop. 1, (28) implies that h(L) = 0 which is impossible if
the true channel is of length L + 1 with h(L) �= 0. Hence,
(19) can not be true for 0 < k ≤ L with P ≥ 2L + 3.

Case 2: L − k < 0. Now we have

A =

L∑
l=0

ṽlh(l) −
P+L−k∑
l=P−k

ṽlh
(i)(l + k − P ) = 0. (29)

If L−k = −1, then P−k ≥ 2L+3−k = 2L+3−1−L = L+2.
If L − k ≤ −2, then P + L − k ≤ P − 2. Therefore, by
Prop. 1, (29) implies that h(0) = 0 which is impossible
since by assumption h(0) �= 0 (else true channel is of length
L instead of the assumed length L + 1). Hence, (19) can
not be true for L < k ≤ P − 1 with P ≥ 2L + 3.

We summarize the above discussion in Lemma 2.
Lemma 2. Given model (1)-(2) with channel length L+

1 so that h(0) �= 0 and h(L) �= 0. If P ≥ 2L + 3 and
Lemma 1 holds true, then the only solution to (19) is given

by h(i)(l) = h(l) for i = n0, 0 ≤ l ≤ L. •
3.1. Proposed Synchronization Method
It is based upon synchronization via exhaustive model fit-
ting via (16) for offsets i = 0, 1, · · · , P − 1 and then testing

to see if E{ỹ(i)(n)} = m′ ∀n. Define

ê(i)
m :=

1

T

T∑
n=1

ỹ(i)(n)e−jαmn (30)

and the cost

Ji :=

P−1∑
m=1

‖ê(i)
m ‖2. (31)

By Lemma 2, for some b,

lim
T→∞

Ji
m.s.
=

{
0, i = n0

b > 0, i �= n0.
(32)

Synchronization Algorithm

1) Execute (14)-(16) for i = 0, 1, · · · , P − 1.

2) Calculate ỹ(i)(n) via (17) and ê
(i)
m via (30) using the

results of Step 1) for i, m = 0, 1, · · · , P − 1, m �= 0.
Determine the cost Ji via (32).

3) The estimate n̂0 of the offset n0 is give by

n̂0 = arg

{
min

0≤i≤P−1
Ji

}
. (33)

Remark 1. The preceding developments are based on
the assumption that h(0) �= 0 and h(L) �= 0. If the model
order (channel length) is unknown and one overfits with
assumed length L̄ > L, then while h(0) �= 0, h(L̄) = 0. It
is relatively straightforward but tedious to establish that in
this case, h(i)(l) as a time-shifted version of h(l) will also
satisfy (19) for some i �= n0. Nevertheless, the true channel
is captured although with a time-shift. We omit the details.

Remark 2. If h(0) and/or h(L) is “small” (in magni-
tude), the proposed method may regard them as 0. There-

fore, comparing estimated channel h(n̂0)(l) with the true
channel h(l) for performance comparison may not be an ef-
fective measure of the proposed method in the sense that
h(n̂0)(l) may be a shifted version of h(l). In Sec. 4, we have
chosen to carry out performance comparison on the basis
of the bit error rate (BER) of a linear MMSE equalizer
designed using the estimated channel. We design a linear
minimum mean-square error (LMMSE) equalizer of length
Le and equalization delay d using the estimated channel.
Let v′(n) := v(n) − m and define (recall (1) and (2))

y′(n) := y(n) −
L∑

l=0

ĥ(n̂0)(l)c(n + n̂0 − l) − m̂,

≈
L∑

l=0

h(l)b(n − l) + v′(n), (34)

where

m̂ := (1/T )

T∑
n=1

[y(n) −
L∑

l=0

ĥ(n̂0)(l)c(n + n̂0 − l)]. (35)

Equalize the channel by applying the LMMSE equalizer to

{y′(n)} to estimate {b(n)} as {b̂(n)}. Quantize {̂b(n)} into

{b̃(n)} with the knowledge of the symbol alphabet (hard
decisions).

4. SIMULATION EXAMPLE

We consider a random frequency-selective Rayleigh fading
channel. We took N = 1 and L = 2 in (1) with h(l)
complex-valued (independent real and imaginary parts),
mutually independent for all l, zero-mean unit variance
Gaussian. Additive noise was zero-mean complex white
Gaussian. The SNR refers to the energy per bit over one-
sided noise spectral density with both information and su-
perimposed training sequence counting toward the bit en-
ergy. Information sequence as well as superimposed train-
ing was binary. We took the superimposed training se-
quence period P = 7 in (H3). The average transmitted
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Figure 1. BER: square/solid: estimate channel using super-
imposed training with known synchronization and then design
a linear MMSE equalizer following [11]; circle/dots: estimate
channel using superimposed training with estimated synchro-
nization and then design a linear MMSE equalizer (proposed
method). Training-to-information symbol power ratio =0.2 (−7
dB). Record length = 400 bits. Results based on 100 Monte
Carlo runs.

power in c(n) (scaled binary) was 0.2 of the power in b(n)
– a small penalty in SNR. There was no loss in informa-
tion rate. Linear MMSE equalizer of length 11 bits and
equalization delay of 5 bits was used throughout (see Re-
mark 2). Fig. 1 shows the BER based on 100 Monte Carlo
runs, resulting from the linear MMSE equalizer designed on
the basis of the estimated channel (see also [11]) using the
proposed approach of estimating the synchronization delay
as well as the approach of [11] based on the knowledge of
true synchronization. [The true channel was different in
different Monte Carlo runs.] It is seen that the proposed
approach works well. The slight discrepancy between the
proposed approach and that of [11] is due the reason cited
in Remark 2, namely, at times small h(0) and/or h(L) are
regarded as 0 by the proposed method which results in some
degradation in the BER performance.

5. CONCLUSIONS

Approach of [11] to SIMO channel estimation using super-
imposed training sequences (hidden pilots) and first-order
statistics is based on the assumption that the superimposed
training sequence at the receiver is time-synchronized with
its transmitted counterpart. In this paper we have removed
this assumption of synchronization and proposed a novel
approach to superimposed training synchronization. The
results were illustrated via a simulation example involving
frequency-selective Rayleigh fading.

The first-order statistics-based approach of [11] views the
information sequence as interference. Since the training and
information sequences of a given user pass through identi-
cal channel, this fact can be exploited to enhance channel
estimation performance via a semiblind approach. Such an
approach has been considered in a companion paper [13] as-
suming time-synchronization of the superimposed training
sequence.
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6. APPENDIX

Proof of Prop. 1: Define the (P − 1) × (P − 1) matrix

W := [v0, v1, · · · , vn, vn+2, · · · , vP−1] (36)

and the [N(P − 1)] × [N(P − 1)] matrix

W̃ := W ⊗ IN . (37)

We have
rank

(
W̃

)
= N × rank (W) . (38)

Since αm = αm−P (recall (4) and (23)), we have

W := [v0, v1, · · · , vn, vn+2−P , · · · , vP−1−P ]. (39)

Consider

W̄ := [vn+2−P , vn+1−P , · · · , v−1, v0, · · · , vn] (40)

which can be obtained from W via elementary row opera-
tions so that

rank
(
W̄

)
= rank (W) . (41)

Finally

W̄ := diag
{
e−jα1(n+2−P ), · · · , e−jαP−1(n+2−P )

}
V̄ (42)

where V̄ is a Vandermonde matrix with rank
(
V̄

)
= P − 1

and
V̄ := [v0, v1, · · · , vP−2]. (43)

The desired result follows from (36), (37), (38) and (43).
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